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Abstract

The rapid proliferation of large audio mod-
els (LAMs) demands efficient approaches for
model comparison, yet comprehensive bench-
marks are costly. To fill this gap, we investigate
whether minimal subsets can reliably evaluate
LAMs while reducing costs and data redun-
dancy. Analyzing 10 subset selection methods
with 18 audio models across 40 tasks covering
major LAM evaluation dimensions, we show
that subsets of just 50 examples (0.3% of data)
can achieve over 0.93 Pearson correlation with
full benchmark scores. To understand how well
these scores align with what practitioners ul-
timately care about–user satisfaction–we col-
lect 776 human preference ratings from realis-
tic voice assistant conversations, finding that
both subsets and full benchmark achieve only
0.85 correlation with human. To better predict
preferences, we trained regression models on
these selected subsets, achieving 0.98 correla-
tion—outperforming regression models trained
on both random subsets and the full benchmark.
This demonstrates that in regression modeling,
well-curated subsets outpredict the full bench-
mark, showing quality over quantity. We open-
source these regression-weighted subsets as the
HUMANS benchmark, an efficient proxy for
LAM evaluation that captures both benchmark
performance and user preferences.

1 Introduction

The landscape of large audio models (LAMs) has
expanded rapidly, with families like Gemini (Gem-
ini Team et al., 2023), GPT-audio (OpenAI, 2024a),
Qwen-Omni (Xu et al., 2025a), and Ultravox (Fixie
AI, 2024) demonstrating diverse capabilities. This
proliferation creates a practical challenge: how to
quickly compare and select models without exhaus-
tive evaluation. Existing LAM benchmarks contain-
ing thousands of examples create substantial com-
putational barriers—audio evaluation requires 10–
100× more tokens than text, making single-model

Figure 1: Overview. We select minimal subsets from
full benchmark pools, validate alignment with human
preferences through interactive evaluations, and train
regression models to efficiently predict user satisfaction.

evaluation cost hundreds of GPU-hours and dollars.
This makes it impractical to quickly compare can-
didate models, evaluate checkpoints, or A/B test
configurations. More critically, static benchmarks
may poorly align with human preferences (Li et al.,
2025; Schaeffer et al., 2025), failing to reflect what
practitioners care about when conversational qual-
ity and user experience are paramount. This raises
two critical questions: Can we reliably rank LAMs
using small benchmark subsets? How to capture
what users actually care about?

To answer these questions, we first conduct a
comprehensive analysis of benchmark subset selec-
tion for LAMs. Evaluating 18 audio models across
40 tasks covering major LAM conversation scenar-
ios (∼16,000 datapoints from 5 benchmarks), we
systematically compare 10 subset selection meth-
ods, showing that carefully selected subsets of just
50 examples (0.3% of data) achieve 0.934 Pearson
correlation with full benchmark scores.
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To understand whether benchmark scores reflect
user satisfaction in real-world deployment, we col-
lect 776 human preference ratings from 10-minute
interactive conversations with 7 representative mod-
els across realistic scenarios spanning tool calling,
task-oriented dialogue, and open chat. Our analy-
sis reveals that both selected subsets and the full
benchmark plateau at 0.85 correlation, indicating
a substantial gap between static evaluation metrics
and real-world user experience. Beyond quantita-
tive ratings, we analyze qualitative feedback, re-
vealing failure modes such as excessive verbosity
and robotic speech not emphasized by benchmarks.

To further improve human preference prediction,
we train regression models on selected subsets, cre-
ating HUMANS (HUman-aligned Minimal Audio
evaluatioN Subsets) benchmark, which achieves
0.978 correlation with user satisfaction, outper-
forming regression models on random sampling
and full benchmark. Our contributions are:

1. Systematic evaluation of 10 subset selection
methods for audio benchmarks, demonstrating
that small subsets enable reliable model ranking
while dramatically reducing costs

2. A human preference dataset of 776 ratings from
realistic voice assistant interactions, understand-
ing benchmark-human alignment, providing
qualitative analysis on user feedback, and en-
abling meta-evaluation of future benchmarks

3. Demonstration that regression models trained on
benchmark subsets predict human preferences
well, providing an efficient proxy that captures
benchmark performance and user preference

2 Related Work

2.1 Large Audio Models
The landscape of large audio models (LAMs)
has rapidly evolved from specialized architectures
like Whisper (Radford et al., 2023) for speech
recognition and VALL-E (Wang et al., 2023)
for synthesis into versatile, general-purpose mod-
els. Contemporary LAMs include audio-in text-
out models that process speech for text genera-
tion (e.g., Gemini (Gemini Team et al., 2023),
Ultravox (Fixie AI, 2024), Voxtral (Liu et al.,
2025), Gemma 3n (Gemma Team, 2025), Phi-4-
multimodal (Abouelenin et al., 2025)) and end-to-
end omni-modal systems that natively handle au-
dio input and output (e.g., GPT-realtime (OpenAI,
2025d), Qwen-Omni (Xu et al., 2025a), GLM-4-
Voice (Zeng et al., 2024), and MiniCPM-o (Yao

et al., 2024)). This diversity makes systematically
comparing models complex.

2.2 LAM Evaluation Benchmarks

The LAM evaluation landscape includes special-
ized benchmarks targeting specific aspects (Speak-
Bench (Manakul et al., 2025) for paralinguis-
tics, MMAU (Sakshi et al., 2024) for reason-
ing, ADU-Bench (Gao et al., 2024) for dia-
logue), application-oriented benchmarks focus-
ing on voice assistant scenarios (WildSpeech-
Bench (Zhang et al., 2025b), VoiceBench (Chen
et al., 2024)), general audio understanding bench-
marks (AudioBench (Wang et al., 2024), AIR-
Bench (Yang et al., 2024)), and comprehen-
sive frameworks (Dynamic-SUPERB (Huang
et al., 2024), UltraEval-Audio (He et al., 2024),
CAVA (Held et al., 2025)). This fragmentation and
extensive scope creates substantial computational
burden, motivating efficient subset selection.

2.3 Benchmark Subset Selection Methods

Sample-efficient benchmarking has roots in psy-
chometrics, particularly Item Response Theory
(IRT) for selecting discriminative items (Lalor
et al., 2016; Martínez-Plumed et al., 2019), with
foundational extensions to diversity-based cluster-
ing (Misir, 2021), training dynamics (Swayamdipta
et al., 2020), and gradient-based active learn-
ing (Coleman et al., 2020). Modern adaptations
on LLMs include Anchor Points (Vivek et al.,
2023), Efficient Benchmarking (Perlitz et al., 2024),
TinyBenchmarks (Polo et al., 2024), and SUB-
LIME (Saranathan et al., 2025) that achieve high
correlation with full rankings using minimal sub-
sets. However, these techniques remain largely
unexplored for LAM evaluation.

2.4 Human Preference and Meta-Analysis

Traditional human evaluation assessed perceptual
quality using metrics like MOS (ITU-T, 1996). In
the LLM era, Chatbot Arena (Chiang et al., 2024)
introduced large-scale pairwise preference collec-
tion, with the LMSYS dataset (Zheng et al., 2023)
becoming a gold standard for meta-evaluating
benchmarks. Human preferences are leveraged to
predict satisfaction on unseen models (Schaeffer
et al., 2025; Ryan et al., 2025). Recent work ex-
tended this to audio models: TalkArena (Li et al.,
2025) collected preferences on audio-in text-out
systems in single-turn interactions, revealing signif-
icant misalignment between benchmark scores and
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human preferences. In our human evaluation, we
further captures more realistic deployment scenar-
ios of LAMs: real-time voice assistants handling
multi-turn conversations and tool interactions.

3 Subset Selection

In this section, we systematically evaluate methods
for selecting minimal yet informative benchmark
subsets that preserve model rankings, across 40
tasks covering major LAM conversation evaluation
dimensions (from 5 benchmarks, ∼16,000 data-
points). Through cross-validation on 18 diverse
audio models, we identify the most effective sub-
set selection methods and construct final minimal
benchmark subsets for practical use.

3.1 Experimental Setup
3.1.1 Audio Models
We evaluate 18 publicly available audio models
with diverse characteristics to ensure our findings
generalize across the LAM landscape. Our selec-
tion spans multiple architectural paradigms: end-
to-end omni-modal systems that natively process
and generate speech (e.g., GPT-4o-audio, Qwen2.5-
Omni), speech-to-text models that encode audio
for text-based reasoning (e.g., Gemini 2.5, Ultra-
vox, Voxtral), and pipeline systems combining sep-
arate components (e.g., Llama-3.2 with external
STT/TTS). Models range from 1B parameters to
large proprietary systems. For consistency in eval-
uation, all models without native audio output use
GPT-4o-mini-tts (OpenAI, 2025a) for speech syn-
thesis, while text-only models in pipeline configu-
rations use GPT-4o-transcribe (OpenAI, 2025b) for
audio input transcription. Complete model specifi-
cations, architectural details, and processing con-
figurations are provided in Appendix A.

3.1.2 Benchmarks
We construct our evaluation suite from 5 es-
tablished audio benchmarks: Dynamic-SUPERB
Phase 2 (Huang et al., 2024), CAVA (Held et al.,
2025), UltraEval-Audio (He et al., 2024), Speak-
Bench (Manakul et al., 2025), and WildSpeech-
Bench (Zhang et al., 2025b), selecting tasks fo-
cused on LAM capabilities on human conversation
and speech. These benchmarks are selected to be
complementary, collectively providing tasks that
represent the majority of evaluation scenarios in
recent LAM literature. This yields 40 distinct evalu-
ation tasks evaluating different dimensions of audio
model capabilities, including speech recognition,

dialogue understanding, instruction following, mul-
titurn function calling, and more. To ensure com-
parability across diverse metrics, we unify scales
of all metrics to [0,1] where 1 represents best per-
formance. Complete task descriptions and metric
unification procedures are detailed in Appendix B.

Our full evaluation across 18 models and
∼16,000 examples required approximately 1520
GPU-hours on NVIDIA A6000 GPUs for open-
source models and $2,400 in API costs for pro-
prietary models, motivating our investigation of
selecting minimal and informative subsets.

3.1.3 Full Benchmark Reference Scores
To establish reference scores, we compute task-
averaged scores where each task contributes
equally regardless of item count:

Score(m) =
1

T

T∑
t=1

s̄m,t (1)

where T is the number of tasks and s̄m,t is model
m’s average score across all items in task t. Since
our 40 tasks are selected to cover major LAM con-
versation evaluation dimensions, equal task weight-
ing ensures each dimension contributes proportion-
ally, preventing tasks with more examples from
dominating rankings. These reference scores serve
as our gold standard for evaluating whether selected
subsets preserve model rankings.

3.2 Subset Selection Methods

3.2.1 Random Sampling Methods
Task-Balanced Random Sampling. As our

baseline, we employ task-balanced random sam-
pling where each datapoint in task t (contain-
ing xt items) has sampling probability pi =
1/(T · xt), where T is the number of tasks, en-
suring each task contributes equally in expectation:
E[samples from task t] = n/T .

Random-Sampling-Learn. Building on the
baseline subset, it uses Ridge regression to predict
full benchmark scores from subset scores (Zhang
et al., 2025a). we learn g by minimizing regular-
ized loss over source models M, then predict target
scores as h(f) = g[s(f, C)] (see Appendix C.1).

Random-Search-Learn. This extends Random-
Sampling-Learn by performing N = 1000 random
sampling iterations, training Ridge regression on
each using 75% of source models for training and
25% for validation, selecting the subset with lowest
validation error, then retraining on all models.
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3.2.2 Intrinsic Item Property Methods
Variance-Based Selection. We select items with

highest discriminative power. For each item i, we
compute variance σ2

i = 1
K−1

∑K
k=1(si,k − s̄i)

2

across model performances where si,k is model
k’s score on item i, and select the top n highest-
variance items globally.

Difficulty-Based Selection. We employ strat-
ified sampling to span the full difficulty spec-
trum (Saranathan et al., 2025). We define difficulty
as Di = 1 − 1

K

∑K
k=1 si,k, partition items into

B = 10 bins, and allocate equal samples per bin
using task-balanced probabilities.

3.2.3 Embedding-Based Clustering Methods
IRT-Based Performance Prediction. Inspired

by tinyBenchmarks (Polo et al., 2024), we train a
5-dimensional two-parameter IRT model on source
model responses to estimate latent item parame-
ters (discrimination αi ∈ R5 and difficulty βi ∈
R). We construct 6-dimensional item embeddings
Ei = [αi;βi] that encode each item’s latent charac-
teristics, which are more robust to distribution shift
than raw correctness patterns. We use these embed-
dings for task-aware weighted K-Means clustering
to select n anchor points. For target model predic-
tion, we estimate ability parameters θ̂m from its an-
chor responses, then compute task-averaged scores
using actual responses for observed items and IRT-
predicted probabilities p̂im = σ(α̂⊤

i θ̂m − β̂i) for
unseen items. Details are in Appendix C.5.

Anchor-Based Selection. We adapt the anchor
points framework (Vivek et al., 2023) with task-
aware weighting. We apply weighted K-Means
clustering on item embeddings using Euclidean
distance, with each item weighted by 1/(T · |Tt|)
where T is the number of tasks and |Tt| is the task
size, resulting in n clusters. We select the datapoint
nearest to each centroid as an anchor point.

For target model m, the Anchor Point Weighted
(APW) score is:

APW(m) =

n∑
i=1

wi · sm,ai (2)

where ai is anchor point i, sm,ai is model m’s nor-
malized score on ai, and wi =

∑
j∈Ci

bj is the clus-
ter weight (sum of task-normalized weights bj for
items in cluster Ci), ensuring equal task contribu-
tion. Implementation details are in Appendix C.6.

Embedding Choices for Clustering. We explore
four embedding spaces for the anchor-based clus-

tering step, each producing a method variant:
Anchor Points (APW): Clusters directly on

source model score vectors (the original method).
Semantic Embedding: Prompts encoded us-

ing OpenAI’s text-embedding-3-large (OpenAI,
2024d), PCA-reduced from 3072 to 50 dimensions.

Acoustic Embedding: 1024-dim acoustic em-
beddings extracted using WavLM-Large (Chen
et al., 2022), reduced to 50 dimensions via PCA.

Combined Embedding: Combined representa-
tions concatenating: (1) acoustic embeddings us-
ing WavLM-Large (Chen et al., 2022), (2) seman-
tic embeddings using OpenAI’s text-embedding-
3-large (OpenAI, 2024d), (3) source model per-
formance scores, and (4) binary metadata indicat-
ing whether audio input/output is required. Acous-
tic and semantic embeddings are PCA-reduced to
match source model count (e.g., 18 dims if 18 mod-
els in (3)) and MinMax-scaled to [0,1] to match the
range of performance scores and metadata. Equal
dimensionality for the first three components en-
sures balanced contribution to clustering.

3.3 Subset Selection Performance

We evaluate each subset selection method across
varying subset sizes from n = 10 to n = 1000
using 3-fold cross-validation with 100 random re-
peats (300 total evaluations per size). In each
fold, we use 12 models for subset selection and
evaluate alignment with full benchmark scores
on the remaining 6 held-out models via Pearson
correlation. Table 1 reports correlation at key
subset sizes (n ∈ {10, 20, 30, 50, 100, 200}) and
Area Under the Correlation Curve (AUCC) over
n ∈ [10, 200], representing the average correlation
achieved across this range. We also report N90 and
N95—the minimum subset sizes achieving Pear-
son correlation r ≥ 0.90 and r ≥ 0.95 with full
benchmark scores, respectively. Figure 2 shows the
correlation curves for the two top-performing meth-
ods and random sampling baseline across subset
sizes. Complete correlation curves for all methods
and results for alternative correlation metrics are
provided in Appendix D.

Key findings from our evaluation[no]:

• Combined Embedding achieves best overall
performance: Highest AUCC (0.943) and
superior correlation for n ≥ 50, reaching r =
0.977 at n = 200.

• Anchor Points excel at small subset sizes:
Best performance for n ≤ 30 (e.g., r = 0.797
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Method Pearson Correlation by Subset Size AUCC N90 / N95

n = 10 n = 20 n = 30 n = 50 n = 100 n = 200 [10, 200]

Random Sampling 0.559±0.021 0.718±0.014 0.784±0.011 0.856±0.008 0.916±0.005 0.959±0.003 0.891 83 / 164
Random-Sampling-Learn 0.544±0.022 0.656±0.017 0.719±0.014 0.791±0.012 0.887±0.006 0.940±0.003 0.854 119 / 300
Random-Search-Learn 0.619±0.018 0.676±0.017 0.734±0.015 0.803±0.010 0.894±0.005 0.937±0.004 0.866 99 / 300
Variance-based 0.525±0.020 0.628±0.016 0.676±0.014 0.716±0.013 0.756±0.012 0.804±0.011 0.742 – / –
Difficulty-based 0.608±0.020 0.761±0.012 0.811±0.009 0.863±0.007 0.924±0.004 0.964±0.002 0.902 71 / 157
IRT-based 0.486±0.020 0.698±0.014 0.778±0.013 0.864±0.007 0.919±0.004 0.960±0.002 0.892 81 / 156
Anchor Points 0.797±0.011 0.856±0.007 0.884±0.006 0.907±0.005 0.940±0.004 0.952±0.003 0.927 40 / 155
Semantic Embedding 0.466±0.023 0.627±0.016 0.781±0.012 0.877±0.007 0.921±0.005 0.936±0.003 0.856 60 / 350
Acoustic Embedding† 0.736±0.013 0.445±0.019 0.672±0.016 0.870±0.008 0.904±0.006 0.943±0.003 0.850 92 / 250
Combined Embedding† 0.651±0.019 0.831±0.010 0.878±0.007 0.934±0.004 0.963±0.002 0.977±0.001 0.943 32 / 67

Table 1: Subset selection performance across methods and sizes. Pearson correlation between subset and full
benchmark scores (mean ± SEM over 300 evaluations). AUCC computed over n ∈ [10, 200]. N90/N95 show
minimum sizes achieving r ≥ 0.90/0.95. “–” indicates threshold not achieved within n = 1000. Bold indicates
best, underline second-best. †Audio-specific methods unique to this work (leverage acoustic features).

Figure 2: Subset selection performance . Pearson cor-
relation with full benchmark scores. Combined Embed-
ding achieves best overall performance (AUCC=0.943),
while Anchor Points excel at small sizes (n ≤ 30).

at n = 10), demonstrating superior sample
efficiency in minimal-evaluation scenarios.

• Random Sampling provides surprisingly
strong baseline: With 0.891 AUCC and r =
0.959 at n = 200, random sampling out-
performs variance-based, learning-based, and
single-modality embedding approaches.

• Learning-based methods substantially un-
derperform: Random-Sampling-Learn and
IRT-based approaches achieve relatively lower
AUCC (0.854, 0.892), potentially due to over-
fitting when generalizing learned patterns
from limited source models to unseen models
even with regularization.

• Small subsets strongly correlate with full
benchmarks: Combined Embedding reaches
r = 0.934 with only 50 samples (∼0.3% of
full benchmark), enabling reliable model rank-
ing with minimal evaluation.

Based on these results, we select Anchor Points
for n ≤ 30 and Combined Embedding for n ≥ 50
as our best-performing methods. For each subset
size, we apply the corresponding method using all
18 models as source models to construct the final
benchmark subsets. These selected subsets provide
practitioners with reliable, minimal evaluation sets
that align with full benchmark scores while dramat-
ically reducing costs. We use them as our "best"
subsets for the analysis in Sections 4.3 and 4.4. Fur-
ther analysis of task composition in these subsets
reveals that these clustering-based methods natu-
rally prioritize foundational capabilities like ASR
and speaker diarization in smaller subsets, progres-
sively incorporating more refined tasks as subset
size increases (detailed in Appendix E).

4 Human Evaluation

Beyond benchmark performance, practitioners ulti-
mately care about real-world user experience. To
obtain this gold standard for model performance,
we collect human preference ratings in realistic
voice assistant scenarios. This enables us to exam-
ine whether selected subsets and full benchmark
scores align with user satisfaction.

4.1 Experimental Design

4.1.1 Conversational Agent Framework
Recognizing that large audio models are pre-
dominantly deployed as real-time conversational
agents, we develop a model-agnostic voice agent
framework adapted from LiveKit (LiveKit, Inc.,
2024) to enable real-time conversational evalua-
tion. The framework supports end-to-end audio
models, audio-in text-out models, and text-only
models. For models without native audio input or
output capabilities, we use the same STT and TTS
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components as described in Section 3.1.1 to ensure
consistent audio processing across all evaluations.
To further ensure fair comparison, we implement
consistent system prompts, conversation manage-
ment, and interaction protocols across all models.
Technical details are provided in Appendix F.

4.1.2 Model Selection
We evaluate 7 representative models from our
pool of 18, spanning diverse architectures and
sizes: GPT-4o-audio-preview, GPT-4o-mini-audio-
preview, Gemini-2.5-Flash, Qwen3-Omni-30B-
A3B-Instruct-thinker, Ultravox-v0.4-ToolACE-8B,
Voxtral-Small-24B-2507, and GPT-4o-mini.

4.1.3 Participant Recruitment
We recruited native English speakers from the
United States via Prolific. This research was ap-
proved by the Institutional Review Board (IRB)
at the authors’ institution. Full human evaluation
details are in Appendix G.

4.1.4 Conversation Protocol
Each participant engaged in a single 10-minute
conversation1 with a randomly assigned model and
scenario. To capture realistic deployment condi-
tions and ensure human evaluations broadly cover
audio models’ capabilities, we designed three sce-
nario categories based on common voice assistant
use cases (Bentley et al., 2018), emphasizing struc-
tured, evaluable tasks while maintaining representa-
tion of free-form conversation. Scenario generation
details in Appendix G.8:

• Open Chat (20%): Free-form conversations
without specific goals or instructions, allow-
ing natural interaction patterns to emerge.

• Goal-Oriented Dialogue (40%): Structured
conversations with defined objectives, using
real interaction patterns sampled from LM-
SYS (Zheng et al., 2023) and WildChat (Zhao
et al., 2024) datasets.

• Tool Calling Tasks (40%): Objective-driven
interactions requiring specific actions (shop-
ping, messaging, calendar management, flight
booking) where task completion can be mea-
sured and displayed to the participant.

4.1.5 Rating Collection
Following each conversation, participants provided
ratings on a 6-point Likert scale across five dimen-

1We chose 10 minutes based on pilot testing - it’s long
enough to capture multi-turn dialogue patterns and task com-
pletion (15-25 turns typical) while avoiding participant fatigue.

sions as well as open-ended feedback justifying
their ratings:

• Overall Satisfaction: Holistic assessment of
the interaction experience

• Speech Understanding: How well the assis-
tant understood speech, intent, and paralin-
guistic cues

• Naturalness: How natural, conversational,
and appropriately concise the interaction felt

• Response Quality: Accuracy, safety, rele-
vance, and helpfulness of responses

• Task Effectiveness: Success and efficiency in
helping achieve goals

4.2 Human Evaluation Results

We collected 776 total evaluations across the 7 mod-
els (approximately 111 conversations per model on
average). Table 2 presents the average human rat-
ings on each dimension.

• Dimension-Specific Insights: Understanding
consistently exceeds overall satisfaction across
models, indicating speech comprehension is not
a limiting factor. In contrast, Naturalness scores
fall below overall satisfaction, revealing conver-
sational flow as the primary bottleneck. Dimen-
sion correlation analysis in Appendix H.2 reveals
Response Quality (r=0.773) and Task Effective-
ness (r=0.781) drive satisfaction most strongly,
while Naturalness shows the weakest correlation
(r=0.626)—suggesting users prioritize functional
capabilities in their evaluation.

• Qualitative Failure Mode Analysis: Open-
ended feedback reveals conversational quality
issues dominate complaints: robotic speech style
(42.8%), stilted flow (18.8%), and excessive ver-
bosity (17.2%) appear in 56.7% of dissatisfied
cases. Poor speech recognition accounts for only
8.7%, confirming ASR is largely solved. This
reveals a potential mismatch: static benchmarks
focus on correctness while users prioritize con-
versational experience.

• Model-Specific Patterns: Pipeline systems
show elevated robotic complaints (GPT-4o-
mini+STT+TTS: 50.6%), while open-source
models struggle with verbosity (Qwen3-Omni:
27.1%, Voxtral: 23.3% vs. 17.2% average). GPT-
4o-audio achieves highest satisfaction (4.98) de-
spite highest latency complaints (38.6%), indicat-
ing users tolerate delays for quality.
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Human Evaluation Benchmark

Model Overall Understanding Naturalness Quality Effectiveness N Score

GPT-4o-audio-preview 4.982 ± 0.091 5.368 ± 0.080 4.368 ± 0.117 5.123 ± 0.086 4.947 ± 0.105 114 0.575
Gemini-2.5-Flash+TTS 4.664± 0.111 5.191± 0.100 4.218± 0.123 4.936± 0.090 4.673± 0.113 110 0.589
GPT-4o-mini+STT+TTS 4.509± 0.122 5.158± 0.093 4.132± 0.109 4.772± 0.100 4.754± 0.110 114 0.498
Qwen3-Omni-30B+TTS 4.211± 0.140 4.872± 0.122 4.000± 0.129 4.578± 0.122 4.385± 0.143 109 0.575
Voxtral-Small-24B+TTS 3.982± 0.135 4.618± 0.128 3.845± 0.135 4.264± 0.128 4.036± 0.140 110 0.507
GPT-4o-mini-audio-preview 3.685± 0.147 4.741± 0.116 3.546± 0.129 4.296± 0.134 4.176± 0.143 108 0.466
Ultravox-v0.4-ToolACE-8B+TTS 3.342± 0.156 4.036± 0.159 3.063± 0.139 3.721± 0.155 3.550± 0.161 111 0.384

Table 2: Human preference evaluation results. Mean ratings ± standard error of the mean across five dimensions
on a 6-point Likert scale (higher is better). Benchmark shows task-averaged scores from the full benchmark suite. N
indicates the number of 10-minute conversations collected per model. Models with +TTS use GPT-4o-mini-tts for
speech synthesis, while +STT+TTS indicates a full pipeline system. Models are ordered by Overall Satisfaction.

Figure 3: Benchmark alignment with human prefer-
ences. Pearson correlation between subset scores (aver-
aged over 100 random initializations) and human overall
ratings. "Best" Subset: Anchor Points for n ≤ 30 and
Combined Embedding for n ≥ 50.

More comprehensive qualitative analysis of hu-
man evaluations is provided in Appendix H. These
human preference rankings provide our gold stan-
dard for validating benchmark subset selection in
the following sections.

4.3 Alignment with Human Preferences

To examine alignment between benchmark per-
formance and human preferences, we evaluate
the full benchmark, task-balanced random sam-
pling baseline, and the "best" subsets of sizes
n ∈ {10, 20, 30, 50, 100, 200} constructed in Sec-
tion 3 (Anchor Points for n ≤ 30, Combined Em-
bedding for n ≥ 50) on the 7 models with human
preference data, computing Pearson correlations
between each method’s model scores and human
overall satisfaction ratings.

Figure 3 presents the results. The full bench-
mark achieves moderate correlation with human
preferences (r = 0.851). Our "best" subsets ap-
proach this ceiling efficiently—the 200-item subset
(∼1.3% of data) matches full correlation—and con-

sistently outperform random sampling, confirming
that principled selection which excelled at bench-
mark score prediction also preserves human pref-
erence alignment. Yet this 0.85 ceiling possibly
reflects the mismatch from our qualitative analysis
of user feedback in Section 4.2: benchmarks and
users may prioritize different quality dimensions.

4.4 Predicting Human Preferences
Given the gap between static benchmark scores
and human preferences, can we improve human
preference prediction with benchmark items so that
practitioners could estimate models’ likely human
reception without costly user studies.

Motivation Our hypothesis is that human prefer-
ences emerge as a composite function of model
performance across diverse benchmark dimen-
sions (Schaeffer et al., 2025). If the full bench-
mark contains these key dimensions, and our se-
lected subsets also capture them—as evidenced
by their correlations with human preferences (Sec-
tion 4.3)—then we can learn to weight benchmark
items to better predict overall human satisfaction.

4.4.1 Prediction Framework
We employ Ridge regression on both the full bench-
mark and selected subsets from Section 3 to learn
the relationship between benchmark performance
and human preferences. For each model m, let
xm ∈ Rn denote its item-level score vector on the
n items in the benchmark or subset, where each
score sm,i ∈ [0, 1] is normalized. Let ym ∈ [0, 1]
denote the model’s human overall satisfaction rat-
ing (linearly rescaled from the original 6-point Lik-
ert scale). We learn a linear predictor:

ŷm = w⊤xm + b (3)

where weights w ∈ Rn and bias b ∈ R are learned
via Ridge regression with L2 regularization.
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Figure 4: Human preference prediction via Ridge
regression. Pearson correlation between predictions
and actual satisfaction using LOMO CV. See Appendix I
for fair comparison excluding in-sample predictions.

4.4.2 Evaluation Protocol
We evaluate the effectiveness of regressions on dif-
ferent subsets with leave-one-model-out (LOMO):

1. For each held-out model mtest:
• Train Ridge regression on the remaining 6

models’ subset scores and human ratings:
{(xmi , ymi)}i ̸=test

• Select regularization strength α ∈
{10−4, 10−3, . . . , 104} via nested leave-
one-out CV with 5 training models, and
retrain on all 6 models with the selected α

• Compute Pearson correlation between
predicted scores {ŷmi}7i=1 and actual hu-
man ratings {ymi}7i=1 across all models

2. Average Pearson correlations across all 7
LOMO folds to obtain the final metric

Given our limited pool of 7 models, this pro-
tocol maximizes regression training informative-
ness while ensuring fair comparison: all regression
models use identical LOMO evaluation, making
relative comparisons fair despite inflated absolute
values. While not directly comparable to original
benchmark correlations (which involve no training
data), this metric reliably ranks regression mod-
els’ effectively. We further validate in Appendix I
that regression on best subsets outperforms original
unweighted scores on held-out models for n > 10.

4.4.3 Results
Figure 4 presents the results:

• “Best” subsets perform better: Principled se-
lection methods consistently outperform random
sampling at different subset sizes, demonstrating

that they capture more discriminative and infor-
mative benchmark items, while random sampling
includes redundant or low-signal items.

• Quality over quantity: Performance peaks at
n = 100 (r = 0.978) for “best” subset be-
fore dropping to r = 0.965 at n = 200 and
r = 0.949 for the full benchmark. This non-
monotonic trend suggests additional items can in-
troduce lower-informative examples that perturb
regression weights learning and degrades gen-
eralization. Effective human preference predic-
tion requires high-quality, diverse item selection
rather than maximizing evaluation coverage—a
well-curated subset of 100 items outpredicts the
full 15,964-item benchmark.

5 Open Benchmarks for Practitioners

To provide practitioners with efficient and ready-
to-use evaluation tools, we present HUMANS
(HUman-aligned Minimal Audio evaluatioN Sub-
sets). For each subset size, we select the best-
performing subset based on highest average Pear-
son correlation across 100-seed cross-validation,
and train final Ridge regression models on all 7
human-evaluated models to predict human prefer-
ences. Each subset provides two evaluation modes:
(1) regression scores using learned Ridge weights
to predict human preference, and (2) benchmark
scores using the subset selection method’s original
weights to efficiently approximate full benchmark.

HUMANS benchmark subsets of different
sizes with selected items and weights are avail-
able at https://huggingface.co/datasets/
HUMANSBenchmark/humans-benchmark.

6 Conclusion

This work addresses the computational challenge
of evaluating large audio models through system-
atic subset selection. Our analysis demonstrates
that principled selection methods identify mini-
mal subsets that preserve both benchmark rank-
ings and alignment with human preferences. Qual-
itative analysis of user feedback reveals critical
gaps between what benchmarks measure and what
users value, with conversational quality issues dom-
inating complaints. Regression models trained
on selected subsets outperform full benchmarks
in predicting user satisfaction, showing that qual-
ity trumps quantity in evaluation. We release our
subsets and human preference ratings to support
efficient model comparison and meta-evaluation.
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Limitations

Our work has several limitations: (1) Our human
evaluation focuses on native English speakers from
the United States, which may not represent the full
spectrum of global users, particularly non-native
speakers or speakers of other languages. (2) Due
to budget constraints and the need for statistical
power, we evaluated only 7 models with human
preferences, limiting the informativeness of cor-
relation analysis and the robustness of our regres-
sion models when generalizing to new architec-
tures. This small sample necessitated a LOMO
evaluation protocol that may overestimate abso-
lute generalization performance, though relative
comparisons between methods remain valid. A
larger pool of human-evaluated models would en-
able more rigorous held-out evaluation and stronger
generalization claims. (3) Our benchmark subsets
are optimized for conversational scenarios and may
not generalize to other audio domains such as mu-
sic understanding or generation. (4) Our subset
selection methods are trained on current LAMs and
may face extrapolation challenges when evaluating
substantially more capable future models with dif-
ferent capability profiles. (5) While our methods
aim at predicting model-level rankings for rapid
comparison, they do not predict item-level scores
for individual benchmark examples—a capability
offered by some methods like IRT that may be valu-
able for detailed diagnostic analysis. Future work
could extend our approach to multilingual evalua-
tion, more comprehensive human evaluations with
larger model pools, adaptive subset selection meth-
ods to scenarios beyond conversational use cases
such as creative audio generation, specialized do-
main applications, or emerging model capabilities.

Ethical Considerations

We identify potential risks of our work. Our pub-
licly released benchmark subsets could enable mod-
els to overfit to specific evaluation items, artificially
inflating performance scores without improving
real-world capabilities such as privacy protection,
fairness across demographic groups, or robustness
to production edge cases. Practitioners should not
rely solely on our benchmarks for deployment deci-
sions, particularly for applications affecting vulner-
able populations. Regarding our human evaluation
study, we collected audio recordings and feedback
from 776 participants under approval from our in-
stitution’s Institutional Review Board (IRB). All

participants were recruited through Prolific and
provided informed consent before recording their
voices. Our current analysis focuses exclusively
on participant ratings and text feedback. We apply
automated filtering to remove personal information
from feedback text before analysis. The raw au-
dio recordings are currently stored securely with
restricted access. Before any potential data sharing,
we will apply noise-masking techniques to reduce
voice recognizability and prevent individual iden-
tification. Processed audio data will only be made
available upon request for research purposes under
controlled distribution agreements.
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A Model Specifications

Table 3 provides complete specifications for all 18
models evaluated in our study. Models are catego-
rized by architecture type, with key characteristics
including parameter count, and public availability.

A.1 Audio Processing Pipeline

To ensure fair comparison across models with dif-
ferent native capabilities, we standardize audio in-
put/output processing:

Audio Input Processing

• End-to-end models: Process audio directly
using native encoders

• Speech-to-text models: Process audio di-
rectly using native encoders

• Pipeline text models: Use GPT-4o-transcribe
API for speech-to-text conversion, providing
the text transcript to the language model

Audio Output Generation

• End-to-end models: Generate audio directly
using native decoders

• Speech-to-text models: Generate text re-
sponses, then synthesize speech using GPT-
4o-mini-tts with default voice and settings

• Pipeline text models: Generate text re-
sponses, then synthesize speech using GPT-
4o-mini-tts with default voice and settings

Rationale Our evaluation adopts a deployer per-
spective: we standardize on GPT-4o-transcribe
and GPT-4o-mini-tts—currently state-of-the-art
STT/TTS systems—to simulate the best-case de-
ployment scenario practitioners can achieve when
using each model as a reasoning backbone. This
isolates models’ core intelligence from STT/TTS
quality variations and reflects real-world practices
where developers compose systems from best-
available components rather than being constrained
by a single model’s native capabilities.

A.2 Model Selection Rationale

Our model selection ensures diversity across multi-
ple dimensions to validate that our benchmark sub-
sets generalize broadly. We include representatives

from all major architectural paradigms (4 end-to-
end, 11 speech-to-text, 3 pipeline systems), span-
ning model scales from 1B parameters (Ultravox-
v0.5-llama-3.2-1B) to large proprietary systems
(GPT-5, Gemini-2.5-Pro). Our selection balances
closed-source commercial APIs (7 models) and
open-source alternatives (11 models), and covers
models released from 2023-2025 to ensure tem-
poral robustness. This diversity, combined with
standardized audio processing from the deployer
perspective, ensures our benchmark subsets pro-
vide reliable model evaluations across the current
and future LAM landscape.

B Benchmark Specifications

We evaluate models on 40 tasks from 5 established
audio benchmarks, totaling approximately 16,000
datapoints. Table 5 provides complete specifica-
tions for all tasks used in our subset selection anal-
ysis. All tasks use instructions in English.

B.1 Benchmark-Specific Notes

Multi-dimensional task splitting: Some tasks
measure performance using multiple metrics si-
multaneously. We treat each metric as a separate
evaluation task:

• CAVA Jeopardy: Original task measured by
both correctness (PEDANT) and latency (re-
sponse time), split into 2 evaluation tasks

• WildSpeech-Bench: All 5 task categories
measured by both content quality (GPT-score)
and speech quality (UTMOS), each split into
2 evaluation tasks (10 total)

Evaluation metrics:

• Dynamic-SUPERB Phase 2:

– Acc. (LLM): GPT-4o judges whether
model answer matches reference

– WER: Word Error Rate
– PER: Phoneme Error Rate

• CAVA:

– PEDANT (Li et al., 2024): QA correct-
ness metric

– Latency (s): Response time in seconds
– Exact match: String matching accuracy
– Function match: Correct function call

execution
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Model Params Open STT TTS Ref.

End-to-End Omni-Modal Systems
GPT-4o-audio-preview – ✗ – – OpenAI (2024a)
GPT-4o-mini-audio-preview – ✗ – – OpenAI (2024c)
GPT-realtime – ✗ – – OpenAI (2025d)
Qwen2.5-Omni-7B 7B ✓ – – Xu et al. (2025a)

Speech-to-Text Models (with TTS for audio output)
Gemini-2.5-Pro+TTS – ✗ – GPT-4o-mini-tts Gemini Team et al. (2023)
Gemini-2.5-Flash+TTS – ✗ – GPT-4o-mini-tts Gemini Team et al. (2023)
Qwen3-Omni-30B-A3B-Instruct-thinker+TTS 30B ✓ – GPT-4o-mini-tts Xu et al. (2025b)
Ultravox-v0.4-ToolACE-8B+TTS 8B ✓ – GPT-4o-mini-tts Fixie AI (2024)
Ultravox-v0.5-llama-3.2-1B+TTS 1B ✓ – GPT-4o-mini-tts Fixie AI (2024)
Ultravox-v0.6-llama-3.1-8b+TTS 8B ✓ – GPT-4o-mini-tts Fixie AI (2024)
Granite-speech-3.3-8b+TTS 8B ✓ – GPT-4o-mini-tts Saon et al. (2025)
Voxtral-Small-24B-2507+TTS 24B ✓ – GPT-4o-mini-tts Liu et al. (2025)
Voxtral-Mini-3B-2507+TTS 3B ✓ – GPT-4o-mini-tts Liu et al. (2025)
Gemma-3n-e4b+TTS 4B ✓ – GPT-4o-mini-tts Gemma Team (2025)
Gemma-3n-e2b+TTS 2B ✓ – GPT-4o-mini-tts Gemma Team (2025)

Pipeline Systems (STT + Text-LLM + TTS)
GPT-4o-mini+STT+TTS – ✗ GPT-4o-transcribe GPT-4o-mini-tts OpenAI (2024b)
GPT-5+STT+TTS – ✗ GPT-4o-transcribe GPT-4o-mini-tts OpenAI (2025c)
Llama-3.2-3B+STT+TTS 3B ✓ GPT-4o-transcribe GPT-4o-mini-tts Dubey et al. (2024)

Table 3: Audio model specifications and processing configurations. We evaluate 18 models across three
architectural paradigms. End-to-end (E2E) systems natively process audio input and generate audio output. Speech-
to-text (S2T) models encode audio for text-based reasoning and use GPT-4o-mini-tts for consistent audio output
generation. Pipeline systems combine GPT-4o-transcribe for audio input, a text-based LLM for reasoning, and
GPT-4o-mini-tts for audio output. Qwen3-Omni-30B-A3B-Instruct-thinker uses the thinker module configuration of
Qwen3-Omni-30B-A3B-Instruct only. Parameter counts indicate the primary model size; dashes indicate proprietary
models where parameters are not disclosed. ✓ indicates open-source models; ✗ indicates proprietary models.

– Refusal rate: Keyword-based refusal de-
tection (Zou et al., 2023)

– IFEval (Zhou et al., 2023): Instruction-
following accuracy

– LAM-Judge: GPT-4o-audio judges
whether response audio matches refer-
ence audio in pronunciation

– 1-JER: One minus Jaccard Error Rate for
speaker diarization

• UltraEval-Audio:

– ExistMatch: Whether the answer is con-
tained in the response

– GPT-score: GPT-4o-mini rates tran-
scribed content quality (1-10 scale)

• SpeakBench:

– WinRate: Pairwise comparison win rate
against GPT-4o-audio using gemini-2.5-
flash as AudioJudge

• WildSpeech-Bench:

– GPT-score: GPT-4o-mini rates tran-
scribed content quality (1-10 scale)

– UTMOS (Saeki et al., 2022): Objective
speech quality predictor (1-5 scale)

B.2 Dataset Statistics
Table 4 summarizes the distribution across bench-
marks.

Benchmark Targets Items

Dynamic-SUPERB Phase 2 14 3,863
CAVA 11 8,321
UltraEval-Audio 4 1,498
SpeakBench 1 82
WildSpeech-Bench 10 2,200

Total 40 15,964

Table 4: Distribution of tasks and datapoints across
benchmarks.
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Table 5: Complete task specifications across all benchmarks. Normalization column shows how metrics are
transformed to [0,1] where 1 represents best performance.

Task Name Description Input Output Metric Norm. Items

Dynamic-SUPERB Phase-2

Accent Classification (Ac-
centDB Extended)

Identifies regional English accent
from speech

Audio Text Acc.
(LLM)

Native [0,1] 200

HEAR Language ID
(VoxLingua107)

Recognizes spoken language from
top 10 languages

Audio Text Acc.
(LLM)

Native [0,1] 195

Human Non-Speech Sound
(Nonspeech7k)

Classifies non-speech human vocal-
izations

Audio Text Acc.
(LLM)

Native [0,1] 140

L2 English Accuracy Rank-
ing (speechocean762)

Ranks pronunciation accuracy be-
tween two L2 speakers

Audio Text Acc.
(LLM)

Native [0,1] 360

L2 English Fluency Rank-
ing (speechocean762)

Ranks speech fluency between two
L2 speakers

Audio Text Acc.
(LLM)

Native [0,1] 360

L2 English Prosodic Rank-
ing (speechocean762)

Ranks prosodic quality between two
L2 speakers

Audio Text Acc.
(LLM)

Native [0,1] 360

PoS Estimation (LibriTTS) Predicts part-of-speech tags from au-
dio without transcription

Audio Text WER 1−min(e, 1) 500

SUPERB ASR
(LibriSpeech-TestClean)

Automatic speech recognition on
clean speech

Audio Text WER 1−min(e, 1) 200

SUPERB Emotion Recogni-
tion (RAVDESS)

Recognizes emotional state from
speech

Audio Text Acc.
(LLM)

Native [0,1] 240

SUPERB Intent Classifica-
tion (SLURP-Intent)

Identifies user intent from spoken
commands

Audio Text Acc.
(LLM)

Native [0,1] 200

SUPERB Keyword Spotting
(Speech Commands V1)

Detects specific keywords in short
clips

Audio Text Acc.
(LLM)

Native [0,1] 200

SUPERB Phoneme Recog-
nition (LibriSpeech-
TestClean)

Recognizes phoneme sequences
from speech

Audio Text PER 1−min(e, 1) 200

Target Speaker ASR (AMI) Transcribes speech from specific tar-
get speaker in multi-speaker audio

Audio Text WER 1−min(e, 1) 500

Voice Disorder Classifica-
tion (VOICED)

Classifies voice pathologies from
sustained vowels

Audio Text Acc.
(LLM)

Native [0,1] 208

CAVA

Jeopardy - Correctness
(cava_jeopardy)

Answers trivia questions in Jeopardy
format

Audio Audio PEDANT Native [0,1] 1000

Jeopardy - Latency
(cava_jeopardy)

Measures response time to the
whole answer

Audio Audio Latency
(s)

1−min(e, 5)/5 1000

Emotion Recognition (emo-
tion)

Identifies counterfactual emotion
from speech prosody

Audio Text Exact
match

Native [0,1] 1562

Deception Detection (decep-
tion_detection)

Identifies deceptive player (were-
wolf) from game dialogue

Audio Text Exact
match

Native [0,1] 151

Function Calling (func-
tion_calling)

Executes appropriate function calls
with audio input

Audio Text Function
match

Native [0,1] 1000

Jailbreak Base (jail-
break_base)

Tests refusal to harmful requests in
audio

Audio Text Refusal
rate

Native [0,1] 520

Jailbreak Persuasive (jail-
break)

Tests refusal to persuasive harmful
requests in audio

Audio Text Refusal
rate

Native [0,1] 520

Multimodal Instruction Fol-
lowing

Follows text instructions when re-
sponding to audio request

Audio Text IFEval Native [0,1] 1000

Pronunciation OED (pro-
nunciation_oed)

Generates correct pronunciation
from the oed of the word

Text Audio LAM-
Judge

Native [0,1] 284

Pronunciation Audio (pro-
nunciation_audio)

Generates pronunciation from refer-
ence audio

Audio Audio LAM-
Judge

Native [0,1] 284

Speaker Diarization
(speaker_diarization)

Identifies speakers of different sen-
tences in conversation

Audio Text 1-JER Native [0,1] 1000

UltraEval-Audio

Speech Chatbot (speech-
chatbot-alpaca-eval)

Speech-to-speech chatbot evaluation Audio Audio GPT-
score

(s− 1)/9 198

LLaMA Questions (llama-
questions)

Question answering from speech Audio Audio ExistMatchNative [0,1] 300

Speech Web Questions
(speech-web-questions)

Web-based question answering from
speech

Audio Audio ExistMatchNative [0,1] 500

Continued on next page
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Table 5 – continued from previous page

Task Name Description Input Output Metric Norm. Items

Speech TriviaQA (speech-
triviaqa)

Trivia question answering from
speech

Audio Audio ExistMatchNative [0,1] 500

SpeakBench

SpeakBench (speakbench) Paralinguistic query answering Audio Audio WinRate Native [0,1] 82

WildSpeech-Bench

Information Inquiry (Con-
tent Quality)

Search and obtain information from
sources

Audio Audio GPT-
score

(s− 1)/9 393

Information Inquiry
(Speech Quality)

Search and obtain information from
sources

Audio Audio UTMOS (s− 1)/4 393

Solution Request (Content
Quality)

Seek action plans for problems Audio Audio GPT-
score

(s− 1)/9 351

Solution Request (Speech
Quality)

Seek action plans for problems Audio Audio UTMOS (s− 1)/4 351

Text Creation (Content
Quality)

Create stories, poems, and text Audio Audio GPT-
score

(s− 1)/9 192

Text Creation (Speech Qual-
ity)

Create stories, poems, and text Audio Audio UTMOS (s− 1)/4 192

Opinion Queries (Content
Quality)

Ask for opinions on subjective ques-
tions

Audio Audio GPT-
score

(s− 1)/9 64

Opinion Queries (Speech
Quality)

Ask for opinions on subjective ques-
tions

Audio Audio UTMOS (s− 1)/4 64

Paralinguistic-Featured
(Content Quality)

Handle pause, stress, tone, stutter-
ing, homophones

Audio Audio GPT-
score

(s− 1)/9 100

Paralinguistic-Featured
(Speech Quality)

Handle pause, stress, tone, stutter-
ing, homophones

Audio Audio UTMOS (s− 1)/4 100
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C Subset Selection Method Details

C.1 Random-Sampling-Learn: Complete
Algorithm

Training procedure:

1. Coreset sampling: Randomly sample n items
from the full benchmark D to form coreset
C ⊂ D, using task-balanced probabilities:
each item i in task t has probability pi =

1
T ·|Tt| where T is the number of tasks and |Tt|
is the number of items in task t.

2. Regression training: Train a Ridge regres-
sion model g on the M = |M| source models
that minimize:

1

M

∑
m∈M

(s̄(m,D)− g[s(m,C)])2 + λ∥g∥22

(4)
where:

• s̄(m,D) = 1
T

∑T
t=1 s̄m,t is the task-

averaged score of source model m on
the full benchmark

• s(m,C) ∈ Rn is the vector of model
m’s scores on the n coreset items

• λ is the regularization parameter

3. Hyperparameter selection: The reg-
ularization parameter λ is selected via
5-fold cross-validation over the set
{0.001, 0.01, 0.1, 1.0, 10.0, 100.0} using
RidgeCV from scikit-learn.

4. Target prediction: For each target model f ,
predict its full benchmark score as:

hRandom-Sampling-Learn(f) = g[s(f, C)] (5)

C.2 Random-Search-Learn: Complete
Algorithm

Training procedure:

1. Train-validation split: Randomly split the
M source models M into training set Mtrain
(75%) and validation set Mval (25%).

2. Coreset search: For each iteration i =
1, . . . , N (where N = 1000):

(a) Sample candidate coreset Ci ⊂ D with
|Ci| = n using task-balanced random
sampling

(b) Train Ridge regression model gi
on Mtrain to predict s̄(m,D) from
s(m,Ci), with regularization parameter
λ selected via cross-validation over
{0.001, 0.01, 0.1, 1.0, 10.0, 100.0}

(c) Evaluate mean absolute error ϵi on vali-
dation set Mval by comparing predicted
and true full benchmark scores

(d) Update best coreset: if ϵi < ϵbest, set
C∗ = Ci

3. Final model training: Retrain Ridge regres-
sion g∗ on all source models M using the
selected coreset C∗, with λ re-selected via
cross-validation.

4. Target prediction: For target model f ,
predict full benchmark score as h(f) =
g∗[s(f, C∗)].

C.3 Variance-Based Selection:
Implementation Details

For each item i in the benchmark:

1. Collect scores from all K source models:
{si,1, si,2, . . . , si,K}

2. Compute mean score: s̄i = 1
K

∑K
k=1 si,k

3. Compute variance: σ2
i = 1

K

∑K
k=1(si,k− s̄i)

2

Sort all items by variance in descending order
and select the top n items globally (not per-task).
This global selection strategy prioritizes the most
discriminative items across the entire benchmark,
which may result in unequal task representation
compared to task-balanced methods.

C.4 Difficulty-Based Selection:
Implementation Details

Difficulty computation: For each item i, diffi-
culty is defined as:

Di = 1− 1

K

K∑
k=1

si,k (6)

where si,k ∈ [0, 1] is the normalized score of model
k on item i. Items where most models fail have Di

close to 1, while items where most models succeed
have Di close to 0.
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Two-phase stratified sampling:

1. Phase 1 - Equal allocation:

• Partition all items into B = 10 difficulty
bins based on quantiles: bin b contains
items with Di ∈ [(b− 1)/B, b/B)

• From each bin b, sample ⌊n/B⌋ items
• Within each bin, use task-balanced prob-

abilities: item i in task t has probabil-
ity pi ∝ 1/|Tt|, normalized to sum to 1
within the bin

2. Phase 2 - Remainder allocation:

• Calculate remainder: r = n mod B

• Re-bin all unsampled items into
min(r,B) bins

• Sample one item from each of the first r
bins using task-balanced probabilities

This ensures: (1) exactly n items are selected,
(2) difficulty distribution is preserved across the
full [0, 1] range, and (3) task balance is maintained
throughout.

C.5 IRT Implementation Details

C.5.1 IRT Model Specification and Training
We employ the 5-dimensional two-parameter logis-
tic (M2PL) IRT model with hierarchical Bayesian
priors:

Yil | θl, αi, βi ∼ Bernoulli(pil) (7)

pil = σ(α⊤
i θl − βi) (8)

θl ∼ N (µθ15, u
−1
θ I5) (9)

αi ∼ N (µα15, u
−1
α I5) (10)

βi ∼ N (µβ, u
−1
β ) (11)

with hyperpriors: µθ, µα, µβ ∼ N (0, 10) and
uθ, uα, uβ ∼ Gamma(1, 1).

Training Procedure We fit the IRT model using
variational inference via the py-irt library (Lalor
and Rodriguez, 2023) on all source models:

1. Data preparation: Extract binary responses
Yil ∈ {0, 1} for all source models and items.
For tasks with continuous scores in [0, 1],
we binarize by finding threshold c such that∑

i,l Yil ≈
∑

i,l ⊮[Yil ≥ c] to preserve the
overall mean score.

2. Model training: Train the 5-dimensional IRT
model with learning rate 0.1 for 500 epochs
using the Adam optimizer with fixed random
seed for reproducibility.

The resulting model provides point estimates
α̂i ∈ R5 and β̂i ∈ R for each item, and θ̂l ∈ R5 for
each source model.

C.5.2 IRT-Based Item Embeddings
Following Polo et al. (2024), we construct item
embeddings by concatenating the IRT parameters:

Ei = [α̂i; β̂i] ∈ R6 (12)

where α̂i ∈ R5 is the discrimination parameter
vector and β̂i ∈ R is the scalar difficulty parame-
ter. This creates a 6-dimensional representation for
each item that encodes: (1) which latent abilities
are required to answer the item correctly (via αi),
and (2) the overall difficulty of the item (via βi).

These embeddings have two key advantages over
raw correctness vectors:

• Dimensionality: The embedding dimension
is 6 rather than K (number of source models,
often hundreds), reducing the curse of dimen-
sionality in clustering.

• Stability: IRT parameters represent latent
item properties learned from the entire source
model population, making them more stable
under distribution shift than individual model
responses.

C.5.3 Performance Prediction via p-IRT
Given a target model m evaluated on the selected
anchor points A = {a1, . . . , an} with responses
{Ya1,m, . . . , Yan,m}, we estimate its ability param-
eters θ̂m by finding θ that maximizes the log-
likelihood:

∑
i∈A

[Yim log pim(θ) + (1− Yim) log(1− pim(θ))]

(13)
where pim(θ) = σ(α̂⊤

i θ − β̂i) uses the pre-
trained item parameters. We solve this optimization
using BFGS initialized at θ0 = 0.

With θ̂m estimated, we compute the p-IRT
performance estimate using task-averaged scores
where observed items use their actual responses
and unseen items use IRT predictions:
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Score(m) =
1

T

T∑
t=1

∑
i∈It bi · sim∑

i∈It bi
(14)

where bi is the task balance weight and:

sim =

{
Yim if i ∈ A
p̂im if i /∈ A

(15)

with p̂im = σ(α̂⊤
i θ̂m − β̂i) being the IRT-

predicted probability of correctness for unseen item
i.

This formulation is theoretically principled:
if the IRT model perfectly captures the data-
generating process, then E[p̂im] = E[Yim], making
our estimate an unbiased estimator of the true full
benchmark score. The estimator directly replaces
missing observations with their conditional expec-
tations given the observed data, which is the op-
timal prediction under mean squared error. This
approach ensures that each task contributes equally
to the final score through the balance weights bi,
and leverages cross-task information through θ̂m
to improve predictions even with sparse per-task
observations.

C.6 Anchor-Based Selection Details
C.6.1 Task-Aware Weighted K-Means

Clustering
Our implementation adapts the anchor points
framework from Vivek et al. (2023) to handle
multi-task audio benchmarks. The framework uses
weighted K-Means clustering on item embeddings,
which can be source model score vectors (origi-
nal anchor points) or alternative representations
(acoustic, semantic, or combined embeddings).

Task-Aware Weighting Each item i in task t
receives balance weight:

bi =
1

T · |Tt|
(16)

where T is the number of tasks and |Tt| is the num-
ber of items in task t. These weights are normalized
to sum to 1 and ensure each task contributes equally
to the clustering and anchor selection regardless of
its size.

Anchor Selection via Weighted K-Means We
perform weighted K-Means clustering on item em-
beddings with k = n clusters:

min
{C1,...,Cn}

n∑
i=1

∑
xj∈Ci

bj∥xj − µi∥2 (17)

where µi is the weighted centroid of cluster Ci and
xj ∈ RD is item j’s embedding vector (dimension-
ality D depends on the embedding choice). Each
centroid is mapped to its nearest real datapoint
using Euclidean distance to select the n anchor
points:

ai = argmin
j:xj∈Ci

∥xj − µi∥2 (18)

Cluster Weights For anchor point i representing
cluster Ci, the weight is the sum of balance weights
in that cluster:

wi =
∑
j∈Ci

bj (19)

Since balance weights sum to 1 across all items,
cluster weights automatically sum to 1:

∑n
i=1wi =

1. This maintains task balance in the final APW
score—clusters containing more items or items
from underrepresented tasks receive proportionally
higher weights.

Differences from Original Anchor Points Our
method differs from Vivek et al. (2023) in three key
ways:

1. Distance metric: We use Euclidean dis-
tance on normalized embeddings instead of
correlation-based distances. Since all audio
metrics are pre-normalized to [0, 1], Euclidean
distance effectively captures performance sim-
ilarity without requiring correlation computa-
tion or logit transforms.

2. Clustering algorithm: We use weighted
K-Means instead of K-Medoids (PAM). K-
Means provides native sample weight support
in scikit-learn, enabling efficient task-aware
clustering with O(n ·D ·K · I) complexity
where I < 100 iterations. We map centroids
to nearest datapoints post-hoc rather than con-
straining medoids during optimization.

3. Task awareness: We introduce task-based
balance weights for multi-task benchmarks,
ensuring equal task contribution regardless of
dataset size. The original method assumed
single-task datasets where uniform weighting
suffices.

D Complete Subset Selection Results

D.1 Correlation Curves for All Methods
Figures 5–13 show detailed correlation curves with
confidence intervals for all subset selection meth-
ods evaluated in this work.
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Figure 5: Random Sampling (Pearson). AUCC=0.891,
N90 = 83, N95 = 164.
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Figure 6: Random-Sampling-Learn (Pearson).
AUCC=0.854, N90 = 119, N95 = 300.

D.2 Alternative Correlation Metrics
Table 6 and Table 7 report Spearman and Kendall
correlations respectively, complementing the Pear-
son results in the main text. All three metrics
show consistent trends, with Combined Embed-
ding achieving the best overall performance and
Anchor Points excelling at small subset sizes.
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Figure 7: Random-Search-Learn (Pearson).
AUCC=0.866, N90 = 99, N95 = 300.
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Figure 8: Variance-based Selection (Pearson).
AUCC=0.742, N90=–, N95=–.
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Figure 9: Difficulty-based Selection (Pearson).
AUCC=0.902, N90 = 71, N95 = 157.
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Method Spearman Correlation by Subset Size AUCC N90 / N95

n = 10 n = 20 n = 30 n = 50 n = 100 n = 200 [10, 200]

Random Sampling 0.518±0.023 0.661±0.016 0.735±0.014 0.798±0.011 0.870±0.007 0.918±0.004 0.844 145 / 300
Random-Sampling-Learn 0.519±0.023 0.636±0.018 0.682±0.016 0.747±0.014 0.846±0.009 0.903±0.006 0.814 200 / 500
Random-Search-Learn 0.573±0.019 0.635±0.018 0.694±0.017 0.756±0.013 0.846±0.008 0.899±0.006 0.823 200 / 500
Variance-based 0.497±0.019 0.591±0.017 0.638±0.015 0.678±0.014 0.718±0.013 0.766±0.012 0.707 – / –
Difficulty-based 0.566±0.021 0.710±0.015 0.759±0.012 0.807±0.010 0.873±0.006 0.916±0.005 0.857 110 / 450
IRT-based 0.462±0.020 0.655±0.016 0.722±0.015 0.804±0.011 0.866±0.007 0.903±0.007 0.834 176 / 800
Anchor Points 0.769±0.013 0.831±0.009 0.858±0.008 0.879±0.007 0.897±0.005 0.926±0.005 0.896 52 / –
Semantic Embedding 0.455±0.022 0.567±0.018 0.733±0.014 0.829±0.010 0.886±0.006 0.892±0.006 0.817 200 / –
Acoustic Embedding† 0.666±0.015 0.426±0.020 0.634±0.018 0.827±0.009 0.858±0.008 0.888±0.006 0.807 180 / –
Combined Embedding† 0.615±0.019 0.787±0.011 0.824±0.011 0.889±0.007 0.918±0.005 0.939±0.004 0.901 55 / 300

Table 6: Spearman correlation between subset and full benchmark rankings.

Method Kendall Correlation by Subset Size AUCC N80 / N90

n = 10 n = 20 n = 30 n = 50 n = 100 n = 200 [10, 200]

Random Sampling 0.427±0.019 0.544±0.015 0.623±0.014 0.692±0.012 0.771±0.010 0.848±0.008 0.751 127 / 500
Random-Sampling-Learn 0.428±0.020 0.528±0.016 0.576±0.015 0.637±0.014 0.750±0.011 0.829±0.009 0.720 158 / 900
Random-Search-Learn 0.480±0.017 0.540±0.017 0.582±0.015 0.651±0.013 0.745±0.010 0.819±0.009 0.728 141 / –
Variance-based 0.415±0.019 0.487±0.016 0.521±0.015 0.555±0.014 0.601±0.014 0.648±0.013 0.591 – / –
Difficulty-based 0.465±0.018 0.595±0.015 0.643±0.013 0.704±0.012 0.775±0.009 0.841±0.008 0.766 93 / 500
IRT-based 0.364±0.017 0.544±0.016 0.611±0.015 0.696±0.012 0.768±0.010 0.821±0.009 0.736 142 / 800
Anchor Points 0.659±0.014 0.731±0.011 0.762±0.010 0.790±0.010 0.818±0.009 0.861±0.008 0.816 55 / –
Semantic Embedding 0.371±0.019 0.460±0.016 0.619±0.014 0.719±0.012 0.800±0.009 0.802±0.009 0.723 99 / –
Acoustic Embedding 0.557±0.015 0.330±0.017 0.528±0.016 0.719±0.011 0.758±0.010 0.797±0.009 0.709 166 / –
Combined Embedding 0.523±0.017 0.680±0.013 0.722±0.012 0.802±0.009 0.844±0.008 0.879±0.007 0.826 49 / 350

Table 7: Kendall correlation between subset and full benchmark rankings. We report N80 and N90 thresholds
(instead of N90 and N95) as Kendall’s τ is inherently more conservative than Pearson’s r and Spearman’s ρ, making
higher thresholds difficult to achieve.
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Figure 10: Anchor Points (Pearson). AUCC=0.927,
N90 = 40, N95 = 155.
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Figure 11: IRT + Anchor Points (Pearson).
AUCC=0.892, N90 = 81, N95 = 156.
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Figure 12: Acoustic Embedding (Pearson).
AUCC=0.850, N90 = 92, N95 = 250.
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Figure 13: Combined Embedding (Pearson).
AUCC=0.943, N90 = 32, N95 = 67.
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E Task Distribution Analysis

To understand what our selection methods priori-
tize, we analyze the task composition of selected
subsets for both Anchor Points (used for n≤30) and
Combined Embedding (used for n≥50). Figures 14
and 15 show the percentage distribution of tasks
across subset sizes for both methods.

E.1 Selection Patterns Across Subset Sizes

Both methods exhibit a clear hierarchy in how they
construct evaluation coverage, progressing from
foundational capabilities to refined, multifaceted
assessment:

Small Subsets (n ≤ 30): Foundational Capabili-
ties At minimal subset sizes, both methods heav-
ily prioritize fundamental speech understanding ca-
pabilities that form the basis of model performance.
In Anchor Points at n = 10, basic tasks dominate:
Target Speaker ASR (21.6%), Speaker Diarization
(18.3%), Text Creation (9.3%), and PoS Estima-
tion (7.9%). Combined Embedding shows similar
patterns: SUPERB ASR (13.8%), SUPERB Emo-
tion Recognition (10.0%), PoS Estimation (9.9%),
Speaker Diarization (9.6%), Text Creation (9.2%),
and Speech TriviaQA (9.0%).

These tasks represent the core building blocks of
audio model capabilities—the ability to accurately
recognize speech, identify speakers, understand
basic linguistic structure, and generate coherent
content. A model’s performance on these foun-
dational dimensions establishes its baseline com-
petence and determines whether it possesses the
prerequisite skills for more sophisticated audio un-
derstanding. When evaluation budget is minimal,
capturing these fundamental capabilities provides
the most essential characterization of what a model
can and cannot do.

Large Subsets (n ≥ 100): Refined and Multi-
faceted Capabilities As subset size increases,
selection shifts toward refined evaluation of par-
alinguistic and specialized capabilities that reflect
more diverse and nuanced aspects of audio under-
standing. Tasks virtually absent at n = 10 gain
substantial representation by n = 100-200: Hu-
man Non-Speech Sound increases from 0.0% to
8.9–9.1% (Anchor Points) and 0.2% to 5.2% (Com-
bined), SpeakBench emerges from 0.0% to 5.2%
(Combined), L2 English Accuracy/Fluency Rank-
ing grow from 0.0% to 9.3–10.0% (Anchor Points),
and Pronunciation tasks increase modestly.

This shift reflects an expansion in the dimensions
along which model capabilities are evaluated. Par-
alinguistic tasks—understanding prosody, accent,
fluency, and non-speech audio—capture sophisti-
cated aspects of audio perception that go beyond
literal content understanding. These refined capa-
bilities constitute a model’s full competence profile:
beyond basic speech recognition and content gen-
eration, can it perceive subtle acoustic cues, handle
diverse speaker characteristics, and understand au-
dio in its full contextual richness? When evaluation
budget allows, incorporating these dimensions pro-
vides a more complete picture of model capabilities,
revealing strengths and weaknesses across the full
spectrum of audio understanding rather than just
foundational skills.

E.2 Comparison of Selection Methods
Concentrated vs. Distributed Capability Cover-
age Combined Embedding (Figure 15) achieves
more uniform task distribution than Anchor Points
(Figure 14), particularly at small-to-medium sizes.
At n = 10, Anchor Points concentrates on just
∼ 7 tasks, while Combined Embedding distributes
across 10+ tasks with > 5% representation. At
n = 200, Combined Embedding shows rela-
tively balanced 2–6% across most tasks, while An-
chor Points maintains sharper peaks (Human Non
Speech Sound 9.1%, L2 English Accuracy Ranking
9.5%). This partly explains their performance dif-
ferences (Figure 2)—at n ≤ 30, concentrated cov-
erage of foundational capabilities suffices to char-
acterize model quality for Anchor Points, while at
n ≥ 50, broader capability coverage better approx-
imates the multifaceted nature of comprehensive
evaluation for Combined Embedding.
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n=10 n=20 n=30 n=50 n=100 n=200
Subset Size

Target Speaker ASR (AMI)
Speaker Diarization (speaker_diarization)

SUPERB ASR (LibriSpeech-TestClean)
Text Creation (Content Quality)

Paralinguistic-Featured (Content Quality)
PoS Estimation (LibriTTS)

Accent Classification (AccentDB Extended)
Jeopardy - Latency (cava_jeopardy)
Solution Request (Speech Quality)
Solution Request (Content Quality)
HEAR Language ID (VoxLingua107)

Paralinguistic-Featured (Speech Quality)
Information Inquiry (Content Quality)

Speech Chatbot (speech-chatbot-alpaca-eval)
LLaMA Questions (llama-questions)

Opinion Queries (Content Quality)
Opinion Queries (Speech Quality)

Human Non-Speech Sound (Nonspeech7k)
L2 English Accuracy Ranking (speechocean762)

L2 English Fluency Ranking (speechocean762)
L2 English Prosodic Ranking (speechocean762)

SUPERB Emotion Recognition (RAVDESS)
SUPERB Intent Classification (SLURP-Intent)

SUPERB Keyword Spotting (Speech Commands V1)
SUPERB Phoneme Recognition (LibriSpeech-TestClean)

Voice Disorder Classification (VOICED)
Jeopardy - Correctness (cava_jeopardy)

Emotion Recognition (emotion)
Deception Detection (deception_detection)

Function Calling (function_calling)
Jailbreak Base (jailbreak_base)
Jailbreak Persuasive (jailbreak)

Multimodal Instruction Following
Pronunciation OED (pronunciation_oed)

Pronunciation Audio (pronunciation_audio)
Speech Web Questions (speech-web-questions)

Speech TriviaQA (speech-triviaqa)
SpeakBench (speakbench)

Information Inquiry (Speech Quality)
Text Creation (Speech Quality)

Ta
sk

21.6 14.7 10.6 6.6 3.9 2.2
18.3 17.4 13.0 10.2 6.2 2.7
9.4 9.6 8.6 7.0 5.5 4.5
9.3 1.4 1.3 2.2 2.3 1.8
8.7 2.2 2.9 3.6 3.3 2.5
7.9 5.2 4.1 3.5 3.6 3.1
7.7 4.8 3.3 2.9 3.0 3.0
3.1 8.6 4.9 3.3 3.3 3.2
2.9 1.0 0.4 0.1 0.5 0.4
2.8 2.6 4.6 4.6 3.5 2.8
2.6 5.3 5.5 6.2 6.6 6.4
2.4 0.0 0.0 0.0 0.0 0.0
2.3 13.5 10.6 7.7 4.6 3.4
0.3 2.2 4.0 3.4 2.6 1.8
0.3 1.1 1.4 2.6 3.2 3.3
0.3 0.3 0.9 1.2 2.5 2.7
0.1 0.3 0.3 0.2 0.1 0.2
0.0 2.5 7.0 8.1 8.9 9.1
0.0 3.5 6.5 9.3 10.0 9.5
0.0 1.6 2.9 3.5 3.6 3.7
0.0 0.6 1.3 2.1 2.5 3.2
0.0 0.1 0.4 0.7 1.6 2.0
0.0 0.0 0.1 1.2 3.6 5.0
0.0 0.1 0.1 1.0 2.2 3.1
0.0 1.0 2.3 2.9 2.2 1.9
0.0 0.0 0.0 0.2 0.7 1.2
0.0 0.0 0.0 0.0 0.3 0.5
0.0 0.0 0.0 0.0 0.2 0.6
0.0 0.1 0.2 0.7 1.0 1.6
0.0 0.0 0.0 0.5 0.7 1.1
0.0 0.1 0.4 0.7 1.4 1.7
0.0 0.0 0.3 1.0 1.0 1.0
0.0 0.0 0.0 0.1 0.4 0.9
0.0 0.0 0.0 0.0 0.0 0.2
0.0 0.0 0.0 0.0 0.2 1.0
0.0 0.0 0.0 0.0 0.2 0.6
0.0 0.2 1.4 1.8 2.2 2.2
0.0 0.0 0.1 0.2 1.4 5.2
0.0 0.0 0.3 0.6 0.9 0.4
0.0 0.0 0.0 0.0 0.0 0.2

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Pe
rc

en
ta

ge
 (%

)

Figure 14: Task distribution for Anchor Points method. Heatmap shows the percentage of items from each
task in subsets of varying sizes (n=10 to n=200), averaged across 100 random seeds. Darker red indicates higher
representation. Tasks are ordered by their representation at n=10.
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n=10 n=20 n=30 n=50 n=100 n=200
Subset Size

SUPERB ASR (LibriSpeech-TestClean)
SUPERB Emotion Recognition (RAVDESS)

PoS Estimation (LibriTTS)
Speaker Diarization (speaker_diarization)

Text Creation (Content Quality)
Speech TriviaQA (speech-triviaqa)

Information Inquiry (Content Quality)
L2 English Fluency Ranking (speechocean762)
L2 English Prosodic Ranking (speechocean762)

HEAR Language ID (VoxLingua107)
Opinion Queries (Content Quality)

Target Speaker ASR (AMI)
Paralinguistic-Featured (Content Quality)

Opinion Queries (Speech Quality)
Solution Request (Content Quality)

Information Inquiry (Speech Quality)
Jeopardy - Latency (cava_jeopardy)

Human Non-Speech Sound (Nonspeech7k)
L2 English Accuracy Ranking (speechocean762)

Deception Detection (deception_detection)
Pronunciation OED (pronunciation_oed)

Accent Classification (AccentDB Extended)
SUPERB Intent Classification (SLURP-Intent)

SUPERB Keyword Spotting (Speech Commands V1)
SUPERB Phoneme Recognition (LibriSpeech-TestClean)

Voice Disorder Classification (VOICED)
Jeopardy - Correctness (cava_jeopardy)

Emotion Recognition (emotion)
Function Calling (function_calling)

Jailbreak Base (jailbreak_base)
Jailbreak Persuasive (jailbreak)

Multimodal Instruction Following
Pronunciation Audio (pronunciation_audio)

Speech Chatbot (speech-chatbot-alpaca-eval)
LLaMA Questions (llama-questions)

Speech Web Questions (speech-web-questions)
SpeakBench (speakbench)

Solution Request (Speech Quality)
Text Creation (Speech Quality)

Paralinguistic-Featured (Speech Quality)

Ta
sk

13.8 5.9 5.1 3.8 3.1 3.0
10.0 6.0 3.6 3.6 3.4 3.4
9.9 5.0 3.3 2.2 1.9 1.8
9.6 6.2 7.1 5.5 3.6 2.7
9.2 3.1 0.3 0.5 1.2 0.5
9.0 8.8 5.1 0.7 1.6 2.9
7.0 4.0 0.3 0.7 1.5 1.8
6.3 5.2 4.9 5.2 4.8 4.1
6.2 5.2 4.7 5.2 4.9 4.4
5.4 5.2 4.5 4.4 4.2 3.9
5.2 0.1 0.3 0.4 0.5 1.6
3.6 2.0 3.3 2.5 2.1 1.5
1.8 4.2 2.2 3.8 3.9 2.5
1.1 1.9 2.4 0.0 0.1 0.2
0.6 1.6 4.5 4.8 3.2 1.7
0.4 0.0 0.0 0.0 0.8 0.7
0.3 5.0 3.3 2.4 2.4 2.0
0.2 4.2 3.8 3.5 4.5 5.2
0.2 0.9 2.1 2.0 3.5 4.1
0.1 3.4 3.4 2.7 3.0 2.6
0.1 2.6 3.3 2.3 2.2 3.5
0.0 0.3 2.3 3.1 3.3 2.9
0.0 0.5 2.1 2.3 3.3 4.0
0.0 4.8 4.0 5.1 5.3 5.6
0.0 3.7 3.2 2.3 1.8 1.5
0.0 2.8 3.4 4.2 4.4 4.4
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0.0 0.3 3.7 4.0 2.3 2.0
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0.0 0.5 1.0 2.1 2.7 2.9
0.0 0.0 0.2 1.2 1.8 2.4
0.0 0.1 0.3 1.8 1.7 2.1
0.0 1.4 5.9 6.0 4.0 2.9
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Figure 15: Task distribution for Combined Embedding method. Heatmap shows the percentage of items from
each task in subsets of varying sizes (n=10 to n=200), averaged across 100 random seeds. Darker red indicates
higher representation. Tasks are ordered by their representation at n=10.
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F Conversational Agent Framework
Implementation Details

F.1 System Architecture

Our conversational agent framework is built on
LiveKit Agents 1.0 (LiveKit, Inc., 2024), an open-
source WebRTC infrastructure and agent frame-
work that enables real-time audio streaming with
low latency and provides high-level abstractions
for pipeline voice assistant development. We ex-
tend this framework to support three distinct model
architectures:

• End-to-end omni-modal: Audio-in, audio-
out models (e.g., GPT-4o-audio, Qwen2.5-
Omni) that natively process and generate
speech

• Speech-to-text: Audio-in, text-out models
that understand audio but generate only text,
requiring external TTS

• Pipeline systems: STT + text-only model +
TTS, augmenting text models with separate
speech components

F.2 Audio Processing and Turn Detection

We employ Silero VAD (Silero-Team, 2024) for
voice activity detection with the following configu-
ration optimized for conversational interactions:

• min_speech_duration: 0.1s (captures short
utterances)

• min_silence_duration: 2.0s (allows natu-
ral pauses)

• prefix_padding_duration: 0.2s (pre-
speaking buffer)

• activation_threshold: 0.4 (balanced sen-
sitivity)

• sample_rate: 16000 Hz

All audio is processed at 16kHz sampling rate.
The 200ms pre-speaking buffer ensures we cap-
ture the beginning of utterances by maintaining a
rolling window of audio frames before speech de-
tection triggers. When the user begins speaking,
these buffered frames are prepended to the captured
audio, preventing cutoff of initial phonemes.

F.3 System Prompts and Conversation
Management

All models receive consistent system prompts con-
structed from scenario-specific instructions plus
standardized guidelines:

{scenario_prompt}

You are a voice assistant. [Architecture-
specific instructions] Respond naturally
and conversationally.

You should never reveal to the user
which model you are. If asked, say you
are a voice assistant.

Architecture-specific instructions vary by model
type:

• Audio-in/audio-out: "You receive audio input
and respond with audio. Speak naturally in
English."

• Audio-in/text-out: "You receive audio input
and respond with text that will be converted
to speech."

• Text-in/text-out: "You receive text transcribed
from audio and respond with text that will be
converted to speech."

Conversation context for the agent tracks:

• Message roles (user/assistant/system/tool)

• User input audio

• Assistant text output or audio transcription

• Tool calls made by the assistant and their re-
sults

F.4 Function Calling and Tool Integration
All models have access to a consistent set of tools
regardless of architecture:

• Web search: DuckDuckGo API (Duck-
DuckGo, 2008) integration for retrieving in-
formation URLs

• URL fetching: Content extraction from web
pages

• Scenario-specific APIs: Domain-specific
tools (travel, shopping, calendar, social me-
dia, smart home, filesystem, messaging, job
search) dynamically loaded based on evalua-
tion scenario

26



Tool execution is tracked by a verifier component
that monitors function calls and validates scenario
goal completion, providing real-time feedback to
participants on model progress.

F.5 Real-time State Broadcasting
To enable frontend visualization and interaction
monitoring, the system broadcasts state updates
via LiveKit’s data channel (see Figure 20 in the
conversation interface):

• Agent state changes: "listening", "thinking",
"speaking"

• User state changes: "listening", "speaking",
"away"

• Function call execution: Function name, ar-
guments, results, success/failure

• Verification status: Scenario goal comple-
tion, function call correctness

G Human Evaluation Protocol and
Scenario Design

G.1 IRB Approval and Ethical Oversight
This research was approved by the Institutional Re-
view Board (IRB) at the authors’ institution prior
to data collection. All procedures followed insti-
tutional guidelines for research involving human
subjects.

G.2 Participant Recruitment
We recruited native English speakers from the
United States via Prolific, a crowdsourcing plat-
form for research participants. Recruitment was
limited to participants who were native English
speakers, located in the United States, and 18 years
of age or older. We balanced recruitment to achieve
approximately equal gender representation (50%
male, 50% female). A total of 776 participants
completed the study.

G.3 Compensation
Participants were compensated $0.25 base pay-
ment and $0.25 per minute of conversation ($2.50
for a full 10-minute conversation), with additional
bonuses: $1 for successfully completing goal-
oriented tasks and $0.25 for providing feedback.
This resulted in compensation ranging from $2.75
to $4 for 10-13 minutes of total participation
time (including consent, conversation, and rating
submission), yielding an hourly rate of at least
$15/hour minimum wage rate.

G.4 Informed Consent and Data Usage
Before beginning the study, all participants were
presented with a consent form (Figure 16) that
first explained the study workflow: assignment
to a random conversation scenario and voice as-
sistant, a 10-minute voice conversation, and rat-
ing the assistant’s performance across multiple di-
mensions. Following this overview, participants
reviewed detailed information about the research
purpose, study procedures, voice recording, data
usage for research purposes, privacy protections,
and their right to withdraw at any time.

The consent form specifically informed partici-
pants that:

• Their voices would be recorded during inter-
action with AI speech models

• All tasks occur in a simulated environment
with no real actions or transactions

• No personal information would be recorded
• Study data would be stored securely in com-

pliance with institutional standards
• Risks associated with participation are mini-

mal
• Participation is voluntary and they have the

right to withdraw consent at any time without
penalty

• Results may be presented at scientific or pro-
fessional meetings or published in scientific
journals, with individual privacy maintained

G.5 Instructions Given to Participants
Upon consenting to participate, Participants then re-
ceived scenario-specific instructions based on their
randomly assigned conversation type:

Open Chat (20% of conversations): Partici-
pants were shown a simple instruction screen indi-
cating they would engage in free-form conversation
with the AI assistant on any topic of interest for
10 minutes, with no specific goals or constraints
(Figure 17).

Goal-Oriented Dialogue (40% of conversations):
Participants received a scenario card (Figure 18)
containing: a brief scenario title, your goal, situa-
tion description, numbered task steps, and clarify-
ing notes.

Function Calling Tasks (40% of conversations):
Participants received structured task scenarios (Fig-
ure 19) including scenario title, goal, identity if
needed, situation, key details, and step-by-step
tasks.
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G.6 Conversation Interface
During the conversation, participants interacted
through a real-time voice interface (Figure 20).

The interface displayed:

• The assigned scenario information in the left
panel

• Real-time conversation status indicators show-
ing the status of the agent and user (e.g. lis-
tening or speaking)

• A microphone button to control voice input
• Connection status and elapsed time
• For function calling tasks: a right panel show-

ing "Function Verification" with real-time
tracking of required function calls and in-
stance state verification progress

• An "End Conversation Early" button for par-
ticipants who wished to terminate before the
10-minute timer

G.7 Post-Conversation Evaluation
After completing the conversation, participants pro-
vided ratings on an evaluation page (Figures 21
and 22). Participants were instructed to use the full
1-6 scale, with guidance that 1-2 indicates signifi-
cant problems, 3-4 represents typical performance
with room for improvement, and 5-6 is reserved for
exceptional quality.

Participants rated five dimensions using 6-point
Likert scales: (1) Overall Recommendation, (2)
Understanding (speech, intent, and paralinguistic
cues), (3) Naturalness (conversational flow and con-
ciseness), (4) Response Quality (accuracy, safety,
relevance, helpfulness), and (5) Task Effectiveness
(efficiency in achieving goals).

Participants then provided required written feed-
back explaining their ratings and could optionally
record audio feedback.

G.8 Scenario Design and Generation
G.8.1 Goal-Oriented Scenario Generation
We created realistic conversation scenarios by
adapting real user-chatbot interactions from two
complementary text-based datasets: LMSYS-Chat-
1M (Zheng et al., 2023), containing diverse Chat-
bot Arena conversations, and WildChat (Zhao et al.,
2024), documenting authentic ChatGPT usage pat-
terns.

Using GPT-4.1 with few-shot prompting and re-
ject sampling, we transformed appropriate conver-
sations into structured scenarios containing: (1) a
brief title, (2) 2-3 sentence description providing

user context, and (3) 3-5 conversation goals repre-
senting logical discussion milestones. Goals serve
as conversation helpers to encourage sustained en-
gagement rather than strict requirements. We re-
jected conversations requiring specialized knowl-
edge, visual aids, external tools, or containing sen-
sitive content. This process yielded 500 candidate
scenarios from each dataset (1,000 total).

A second filtering stage using o4-mini validated
and improved scenarios for conversational suitabil-
ity, ensuring appropriateness for general partici-
pants in voice-only interactions.

G.8.2 Function Calling Task Scenarios
We adapted the Berkeley Function-Calling Leader-
board (BFCL) v3 (Patil et al., 2025) multi-turn
function calling framework to create 40 realistic
voice assistant evaluation scenarios spanning 8 do-
mains: calendar management (5 tasks), shopping
(5 tasks), travel booking (8 tasks), social media
(5 tasks), smart home control (1 task), filesystem
operations (7 tasks), messaging (5 tasks), and job
search (4 tasks). Each scenario includes: (1) a
user goal and situational context, (2) initial system
state with pre-populated data, (3) available function
definitions, (4) required verifiable actions for suc-
cessful completion, (5) forbidden operations that
constitute violations, and (6) expected final state
for verification.
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Figure 16: Study overview and informed consent form. The page begins with "How it works" explaining the
study workflow, followed by the detailed informed consent section covering purpose, procedures, risks, benefits,
compensation, and participant rights.
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Figure 17: Open chat scenario assignment. Example of scenario instructions for free-form conversations.
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Figure 18: Goal-oriented scenario assignment. Example showing the "Weight Loss" scenario with structured
context and goals.
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Figure 19: Function calling scenario assignment. Example showing the "Social Media Engagement" scenario
with detailed task requirements.
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Figure 20: Real-time conversation interface. Shows the voice interaction screen with scenario information (left),
conversation status indicators, and function verification panel (right) for tracking task completion in function calling
scenarios.
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Figure 21: Overall recommendation rating interface. Expandable 6-point scale with detailed descriptions for
each rating level.
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Figure 22: Multi-dimensional rating interface. All five evaluation dimensions with expandable scales, text
feedback area, and optional audio feedback recording.
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H Qualitative Analysis of Human
Evaluations

H.1 Failure Modes and User Feedback
To understand model limitations from users’ per-
spective, we analyzed open-ended feedback from
all 776 conversations. For participants who pro-
vided optional audio feedback, we first transcribed
recordings to text using Whisper-large-v3 (Radford
et al., 2023) and concatenated with written feed-
back. To protect participant privacy, all feedback
was processed through Microsoft Presidio (Mi-
crosoft, 2025) to automatically detect and mask
personally identifiable information (PII) including
names, addresses, phone numbers, email addresses,
and other identifying details. Detected entities were
replaced with placeholders before any subsequent
analysis or storage.

We then applied a three-stage automated pipeline
powered by GPT-5.2 (OpenAI, 2025e) to the
privacy-protected feedback. Among the 741 partic-
ipants who left feedback, 621 expressed some form
of dissatisfaction or suggested improvements.

Stage 1: Dissatisfaction Detection and Sum-
marization. We fed each piece of raw feedback
to GPT-5.2 to determine whether it expressed dis-
satisfaction and, if so, to generate a concise 1–2
sentence summary of the specific failure mode.

Stage 2: Category Generation. We provided
all 621 dissatisfaction summaries from Stage 1 to
GPT-5.2 in a single prompt, instructing it to induc-
tively generate comprehensive failure mode cate-
gories that cover the range of problems mentioned.
The model generated 25 distinct categories.

Stage 3: Feedback Categorization. Using the
25 categories generated in Stage 2, we classified
each dissatisfaction summary by asking GPT-5.2
to assign it to one or more applicable categories,
allowing for multi-label classification. We then
coded the 621 feedback responses into the resulting
categories.

H.1.1 Overall Failure Mode Distribution
Table 8 presents the complete distribution of failure
modes. The results reveal clear patterns in user
dissatisfaction that are not adequately captured by
existing benchmarks.

Conversational Quality Dominates User Dissat-
isfaction The most striking finding is that con-
versational quality issues far outweigh technical
capability failures. Three related categories domi-
nate user complaints:

Failure Mode Count (%)

Robotic/Unnatural Speaking Style 266 (42.8%)
Task Execution Failure 147 (23.7%)
Slow Response Latency 143 (23.0%)
Stilted Conversation Flow 117 (18.8%)
Overly Verbose Responses 107 (17.2%)
Unhelpful Response Strategy 95 (15.3%)
Misunderstood User Intent 82 (13.2%)
Looping/Stalling/Non-Responsiveness 70 (11.3%)
Audio Output Glitches 68 (11.0%)
Insufficient Proactivity 57 (9.2%)
Poor Speech Recognition 54 (8.7%)
Poor UX/Interface Support 44 (7.1%)
Missing Confirmation/Progress Transparency 43 (6.9%)
Inconsistent Voice or Language Output 42 (6.8%)
Incomplete Answers 39 (6.3%)
Tool/API/Integration Errors 37 (6.0%)
Incorrect or Unreliable Information 29 (4.7%)
Outdated or Not-Current Information 19 (3.1%)
Tone/Interpersonal Issues 16 (2.6%)
Poor Instruction Following 15 (2.4%)
Over-Agreeable/Lack of Critical Pushback 14 (2.3%)
Context/Memory/State Tracking Issues 12 (1.9%)
Privacy/Security/Auth Friction 11 (1.8%)
Bias/Defensiveness/Trust Issues 5 (0.8%)
Unintended or Premature Actions 4 (0.6%)

Table 8: Distribution of failure modes from human
feedback. Count and percentage of 621 dissatisfaction
cases across 25 categories. Percentages sum to >100%
due to multi-label classification where feedback could
be assigned to multiple categories.

Robotic/Unnatural Speaking Style (42.8%)
emerged as the single most common issue, with
users describing outputs as monotone, overly for-
mal, or having unnatural prosody. Representative
feedback includes:

•“The assistant understood the queries and pro-
vided sufficient, reasonable answers, but its
speech sounded slightly robotic and overly
formal—at times like it was reading from a
book—reducing naturalness.”

•“I rated naturalness 4/6 because it felt a little
monotone and robotic with little inflection or
changes of pace that are typical in normal
human conversation.”

•“I would have liked maybe a little side chatter.”

Stilted Conversation Flow (18.8%) reflects is-
sues with dialogue structure, including excessive
numbered lists, scripted delivery, and poor turn-
taking:

•“It was more focused on lists, so I did not get a
chance to really have a normal conversation.”

•“It felt less like a flowing conversation and
more like a series of individual responses.”

•“Overall I recommended her as five the only
reason that I gave her a little bit lower score
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of four on the task effectiveness is because she
was very cautious and kept repeating herself
over and over again.”

Overly Verbose Responses (17.2%) captures
users’ frustration with excessive detail when con-
cise answers were expected:

•“I think the lengthy response can let people
lose focus and forget the task at hand and
become distracted by other parts that the AI
is talking about.”

• ‘Even for simple questions, replies contained
too much detail, causing the user to lose atten-
tion/tune out despite the information generally
being useful.”

• ‘I do feel like some of the information could be
overwhelming with how much she gives.”

Collectively, these three conversational quality
categories appear in 490 mentions. Since feed-
back can match multiple categories, we find that
352 unique feedback instances (56.7%) mention
at least one of these three conversational quality
issues, making them the dominant source of user
dissatisfaction. While some benchmarks include
speech quality metrics (e.g., UTMOS scores in
WildSpeech-Bench for speech quality), these mea-
sures capture only isolated utterance quality rather
than conversational dynamics like verbosity, for-
mality appropriateness, or turn-taking. This gap
between static quality assessment and interactive
conversational experience helps explain why our
full benchmark achieves 0.851 correlation with hu-
man overall satisfaction—benchmarks primarily
optimize for correctness and isolated speech qual-
ity, while users evaluate holistic conversational ex-
perience including response length, style appropri-
ateness, and dialogue flow.

Task Execution and Technical Reliability Be-
yond conversational quality, task execution failure
(23.7%) and technical issues significantly impact
user experience. Task execution complaints typi-
cally involved incomplete function calls or failed
tool integrations:

•“It kept saying something about there was er-
rors on the calendar that I had to manually
fix. It wouldn’t try to solve them. And overall,
it wouldn’t book the meeting at the end.”

•“I felt that the AI assistant was really helpful
in what I was trying to do. Unfortunately, she
wasn’t able to help me find a cheap flight on

the day that I wanted to take my trip. She
asked if I wanted to change the date or add
more money to my card, which I chose not to
do.”

Latency and Infrastructure Limitations Slow
response latency (23.0%) and audio output glitches
(11.0%) represent infrastructure limitations rather
than core model capabilities. Notably, feedback in
these categories typically expressed mild frustra-
tion rather than severe dissatisfaction:

• ‘There were a few moments that the assistant
took longer than expected to reply to my re-
sponses. Other than that, the experience was
quite pleasant.”

•“There was some stuttering at times, but other
than that, it was very good.”

These issues highlight the need for real-time pro-
cessing capabilities, such as streaming audio in-
put processing that begins before users finish
speaking. While proprietary APIs like GPT-
Realtime API (OpenAI, 2025d) and Gemini Live
API (Google DeepMind, 2024) offer such capa-
bilities, they employ model-specific optimizations
that conflate infrastructure improvements with core
model capabilities, which would not reflect what
our benchmarking is trying to optimize for. We did
not build a more real-time system that processes
audio while speaking either, as this requires engi-
neering changes to the model’s internal structure
and would not support closed-source models in
our evaluation framework. Our standardized pro-
cessing approach prioritizes isolating model perfor-
mance from deployment optimizations, though this
comes at the cost of increased latency. Importantly,
we include latency measurements in our 40 bench-
mark tasks, so latency impact can be quantified in
our regression models.

Speech Recognition Less Problematic Than
Expected Notably, poor speech recognition ac-
counts for only 8.7% of complaints. This sug-
gests contemporary LAMs have largely solved ba-
sic ASR for native English speakers in controlled
conditions. The remaining challenges primarily
involve edge cases (accents, background noise,
domain-specific terminology) or downstream in-
tent interpretation (13.2%) rather than raw tran-
scription accuracy. This finding aligns with our
observation in Table 2 that Understanding scores
consistently exceed Overall Satisfaction across all
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models—speech comprehension is generally not
the limiting factor in user experience.

Implications for Benchmark Design Our quali-
tative analysis reveals three critical gaps in current
LAM evaluation:

1. Missing conversational quality metrics: Nat-
uralness, conciseness, and appropriate formal-
ity drive 78.9% of user dissatisfaction yet are
not systematically evaluated in existing bench-
marks.

2. Static evaluation misses interactive failures:
Latency, turn-taking, error recovery, and real-
time audio quality only manifest in live conver-
sation, not in offline benchmark tasks.

3. Accuracy-usability tradeoff unaddressed:
Benchmarks prioritize correctness (ASR word
error rate, task completion) while users weight
naturalness and efficiency equally or higher in
determining overall satisfaction.

These findings justify our human preference val-
idation approach: benchmark subset selection must
be validated against user experience to ensure se-
lected items capture not just the capabilities mea-
sured by benchmarks, but the dimensions users
actually care about. Our regression models (Sec-
tion 4.4) partially address this gap by learning to
weight benchmark items according to their corre-
lation with human satisfaction, effectively discov-
ering which benchmark tasks serve as proxies for
conversational quality that benchmarks do not di-
rectly measure.

H.1.2 Model-Specific Failure Patterns
While Section H.1.1 identified overall trends, in-
dividual models exhibit distinct failure profiles re-
flecting architectural choices and optimization pri-
orities. Figure 23 visualizes failure mode distribu-
tions across all 7 evaluated models for the most
prevalent categories (>8% overall rate).

TTS Quality Degrades Naturalness in Pipeline
Systems Models using external TTS (GPT-4o-
mini+STT+TTS, Voxtral+TTS, Ultravox+TTS)
show elevated robotic style complaints. GPT-4o-
mini with full pipeline exhibits the highest rate
at 50.6% (1.18× baseline), while Voxtral (45.6%,
1.07×) and Ultravox (44.9%, 1.05×) also exceed
the 42.8% average. In contrast, GPT-4o-audio
(39.8%, 0.93×) and GPT-4o-mini-audio (40.2%,
0.94×)—which use native generation or higher-
quality TTS—perform closer to baseline. This

pattern confirms that pipeline architectures incorpo-
rating separate TTS components degrade conversa-
tional naturalness, with the full STT→LLM→TTS
pipeline showing the most severe impact.

Closed-Source Large Models Trade Latency for
Quality Proprietary large models exhibit dispro-
portionately high latency issues: GPT-4o-audio
(38.6%, 1.68× baseline), Gemini-2.5-Flash (28.7%,
1.25×), and GPT-4o-mini-audio (23.7%, 1.03×) all
exceed the 23.0% average, while open-source mod-
els like Ultravox (15.3%, 0.67×) and Qwen3-Omni
(16.5%, 0.72×) show lower rates. This suggests
closed-source providers prioritize response quality
over speed, which introduce user-perceptible de-
lays. Interestingly, users appear willing to tolerate
this tradeoff—GPT-4o-audio achieves the highest
satisfaction (4.98) despite the highest latency com-
plaints, indicating quality outweighs responsive-
ness for overall experience.

Large Open-Source Models Struggle with Con-
ciseness Qwen3-Omni (27.1%, 1.58× baseline)
and Voxtral (23.3%, 1.36×) show the highest rates
of overly verbose responses, substantially exceed-
ing the 17.2% average. These models also exhibit
elevated stilted conversation flow issues (Qwen3:
22.4%, 1.19×; Voxtral: 23.3%, 1.24×), suggesting
systematic problems with conversational brevity
and natural dialogue structure. In contrast, GPT-
4o-mini-audio achieves remarkably low verbosity
(8.2%, 0.48×), indicating successful optimization
for concise interaction. This verbosity gap likely
stems from instruction-tuning differences—open-
source models may be trained to provide compre-
hensive explanations while proprietary voice as-
sistants are optimized for minimal, conversational
responses.

Ultravox Audio Understanding Limitations
Ultravox-v0.4-ToolACE-8B still exhibits severe au-
dio comprehension issues: poor speech recognition
(17.3%, 1.99× baseline) and misunderstood user
intent (32.7%, 2.48×) are both approximately dou-
ble the average rates. These understanding failures
compound with task execution problems (39.8%,
1.68×) and unhelpful response strategies (30.6%,
2.00×), creating a cascading failure pattern that ex-
plains the model’s lowest overall satisfaction (3.34).
Notably, Ultravox’s benchmark scores (0.384) cor-
rectly predict poor performance, but the failure
mode analysis reveals the specific bottleneck: au-
dio input processing rather than output capabilities.
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Figure 23: Model-specific failure mode distributions. Heatmap shows percentage of dissatisfaction cases
mentioning each failure category for each model. Cell color intensity represents the ratio to baseline (average across
all models), with darker red indicating higher-than-average rates and darker green indicating lower-than-average
rates. Models are ordered by overall human satisfaction (left to right: highest to lowest). Only failure modes with
>8% overall prevalence are shown.

Native Audio Output Does Not Guarantee Qual-
ity GPT-4o-mini-audio shows 18.6% audio out-
put glitches (1.69× baseline) and 30.9% inconsis-
tent voice output (4.54× the 6.8% baseline, not
shown in figure)—dramatically higher than models
using external TTS like GPT-4o-mini+TTS (8.2%
glitches, 6.2% inconsistency). This counterintu-
itive finding suggests that small-scale native audio
generation does not necessarily provide advan-
tages over high-quality TTS synthesis. While
end-to-end architectures theoretically enable better
prosody control and voice consistency, gpt-4o-mini-
audio appear to lack the capacity for stable audio
generation, producing artifacts, dropouts, and voice
switching issues. This explains why GPT-4o-mini-
audio (3.69 satisfaction) substantially underper-
forms the pipeline-based GPT-4o-mini+STT+TTS
(4.51), despite the latter’s higher robotic style com-
plaints—reliability trumps naturalness when audio
output actively fails.

These findings demonstrate that failure modes
are not uniformly distributed—architectural
choices, model scale, and optimization priorities
create distinct profiles that benchmarks alone
cannot reveal. Understanding these patterns
enables practitioners to select models aligned with
deployment constraints: prioritize large end-to-end
models for conversational applications, accept
pipeline systems when leveraging existing text-
based capabilities, and recognize that small-scale
native audio generation currently offers limited
advantages over high-quality TTS synthesis.

H.2 Rating Dimension Correlation Analysis

To understand the relationships between different
aspects of user satisfaction, we analyzed pairwise
correlations between rating dimensions at both
the conversation level (N=776 individual conver-
sations) and model level (N=7 models). Table 9
presents the complete correlation matrix. Model-
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Overall Understanding Naturalness Quality Effectiveness

Overall — 0.669 0.626 0.773 0.781
Understanding 0.949 — 0.523 0.679 0.658
Naturalness 0.970 0.957 — 0.586 0.528
Quality 0.978 0.990 0.969 — 0.793
Effectiveness 0.957 0.992 0.946 0.986 —

Table 9: Pairwise correlations between rating dimensions. Upper triangle: sample-level correlations across 776
conversations. Lower triangle: model-level correlations across 7 models.

level correlations are uniformly high (all r > 0.94)
due to the limited sample size (N=7 models) and
the fact that aggregation removes individual conver-
sation variance. Consequently, we focus our anal-
ysis on sample-level correlations, which provide
more nuanced insights into how different aspects
of model performance relate to user satisfaction
across 776 individual interactions.

Response Quality and Task Effectiveness Drive
Overall Satisfaction: At the sample level, Re-
sponse Quality (r=0.773) and Task Effectiveness
(r=0.781) exhibit the strongest correlations with
Overall Satisfaction. These two dimensions are
also highly interdependent (r=0.793), indicating
they capture related aspects of model utility: when
a model provides high-quality responses, it tends
to complete tasks effectively, and vice versa. To-
gether, these functional capabilities are the primary
drivers of user satisfaction in voice assistant inter-
actions and are therefore predictive for the overall
rating.

Naturalness Shows Weak Interdependence
and Limited Impact: In contrast, Naturalness
demonstrates notably weaker correlations with
other dimensions. Its correlation with Task Ef-
fectiveness (r=0.528) and Understanding (r=0.523)
are the lowest pairwise correlations in the matrix,
suggesting Naturalness represents a relatively in-
dependent aspect of conversational quality. More-
over, Naturalness exhibits the weakest correlation
with Overall Satisfaction (r=0.626) among all four
specific dimensions, indicating that conversational
flow and naturalness, while measurable, contribute
less to overall user satisfaction than functional ca-
pabilities. This pattern suggests that users prioritize
task completion and response quality over conver-
sational naturalness—a model can feel somewhat
robotic yet still achieve high satisfaction if it deliv-
ers accurate, effective results.

Understanding Shows High Variance but
Limited Discriminative Power: Understanding

demonstrates reasonable sample-level correlation
with Overall Satisfaction (r=0.669), but notably
shows the lowest model-level correlation among all
dimensions (r=0.949 vs. r=0.970 for Naturalness).
This discrepancy likely stems from ceiling effects:
as shown in Table 2, Understanding scores are
consistently high across all models (range: 4.036-
5.368), with even the lowest-performing model ex-
ceeding 4.0 on the 6-point scale. This restricted
range at the model level reduces discriminative
power, making Understanding less useful for dis-
tinguishing between models despite its reasonable
within-model variance across individual conversa-
tions.

H.3 Verifiable Task Completion and User
Satisfaction

For the 40% of conversations involving function
calling tasks, we analyzed objectively verifiable
task progress in terms of steps alongside subjective
user satisfaction metrics. Table 10 presents the
results across all evaluated models.

On function-calling tasks, GPT-4o-audio-
preview achieved the highest objective task
progress at 67.7%, followed by GPT-4o-
mini+STT+TTS at 64.1% and Gemini-2.5-
Flash+TTS at 61.2%. Smaller open-source models
showed substantially lower performance, with
Ultravox-v0.4-ToolACE-8B+TTS completing
only 30.1% of verifiable task steps. The ranking
on function-calling scenarios largely mirrors the
overall results in Table 2, with GPT-4o-audio-
preview maintaining its leading position and
the performance gap between commercial and
open-source models remaining substantial.

However, objective task progress correlates only
moderately with overall satisfaction (r = 0.87) and
task effectiveness (r = 0.85), with notable diver-
gences revealing the complexity of user satisfac-
tion. Most strikingly, GPT-4o-mini-audio-preview
achieves 55.7% task progress compared to Qwen3-
Omni-30B+TTS’s 36.6%—a substantial differ-
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Model Objective Task Progress Task Effectiveness Overall Satisfaction N

GPT-4o-audio-preview 67.7%± 5.6% 4.77± 0.20 4.80± 0.16 44
GPT-4o-mini+STT+TTS 64.1%± 5.6% 4.64± 0.21 4.27± 0.21 45
Gemini-2.5-Flash+TTS 61.2%± 6.3% 4.34± 0.22 4.43± 0.22 35
GPT-4o-mini-audio-preview 55.7%± 5.6% 3.80± 0.28 3.52± 0.24 44
Voxtral-Small-24B+TTS 44.0%± 6.8% 2.91± 0.24 3.03± 0.25 35
Qwen3-Omni-30B+TTS 36.6%± 5.9% 3.93± 0.26 3.73± 0.25 45
Ultravox-v0.4-ToolACE-8B+TTS 30.1%± 5.9% 2.58± 0.29 2.50± 0.28 36

Table 10: Function calling performance. Objective Task Progress shows percentage of verifiable task steps
completed ± standard error; Task Effectiveness and Overall Satisfaction show mean user ratings ± standard error
on function-calling scenarios only (6-point Likert scale, higher is better). N indicates the number of function-calling
evaluations per model.

ence—yet receives lower overall satisfaction (3.52
vs. 3.73). Similarly, GPT-4o-mini+STT+TTS com-
pletes 64.1% of task steps but receives lower over-
all satisfaction (4.27) than Gemini-2.5-Flash+TTS
at 61.2% progress and 4.43 satisfaction. These
discrepancies reveal that user satisfaction depends
not only on task completion but also on interac-
tion quality—conversational naturalness, respon-
siveness, and perceived effort—which can vary
substantially across models even at similar com-
pletion rates. This underscores the limitation of
benchmarks that measure task success in isolation
without capturing holistic user experience.

I Fair Comparison: Pairwise Ranking
Accuracy

While the LOMO Pearson correlation in Sec-
tion 4.4 provides fine-grained comparison across
subset selection methods, it includes in-sample pre-
dictions for training models, which may overesti-
mate generalization performance. To provide a fair
comparison between regression-based predictions
and original subset scores, we evaluate pairwise
ranking accuracy using a 5-2 train-test split.

I.1 Evaluation Protocol

We perform exhaustive 5-2 cross-validation across
all possible splits of the 7 human-evaluated models:

1. For each of the
(
7
2

)
= 21 possible held-out pairs

(mi,mj):
• Train Ridge regression on the remaining 5

models’ subset scores and human ratings
• Select regularization strength α ∈
{10−4, 10−3, . . . , 104} via nested leave-
one-out CV on the 5 training models

• Retrain on all 5 models with the selected
α and predict for the 2 held-out models:
ŷmi , ŷmj

• Check if the pairwise ranking is correct:
(ŷmi > ŷmj ) ⇐⇒ (ymi > ymj )

2. Compute pairwise ranking accuracy: propor-
tion of correctly ranked pairs across all 21 splits

For comparison, we compute pairwise ranking
accuracy using original subset scores on the same
21 held-out pairs without any regression training.
This provides a fair evaluation where both ap-
proaches make predictions on truly unseen models.

I.2 Results

Table 11 presents pairwise ranking accuracy under
fair 5-2 cross-validation. Key findings:

• Regression improves generalization for larger
subsets: For n ≥ 30, Ridge regression con-
sistently outperforms original scores for best
subsets. The advantage is most pronounced at
n = 50 and n = 100 (∆ ≈ 0.055). This sug-
gests that regression effectively predicts human
preferences by learning how to weight different
benchmark dimensions, capturing the composi-
tional nature of user satisfaction better.

• Small subsets show comparable performance:
At n ≤ 20, regression and original scores achieve
similar accuracy, likely because small subsets
lack coverage of all important dimensions needed
for regression to learn robust mappings. Addi-
tionally, the 5-2 split constraint limits training to
only 5 source models. Our final released bench-
marks use all 7 models for training, which should
yield better human preference prediction.

• Quality items are essential for effective regres-
sion: Random sampling shows a striking pat-
tern—regression underperforms original scores
across all sizes (e.g., ∆ = −0.080 at n = 10,
∆ = −0.046 at n = 200). This demonstrates
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n "Best" Subset Random Baseline

Regression Original Regression Original

10 0.797± 0.008 0.809± 0.004 0.625± 0.017 0.705± 0.012

20 0.817± 0.007 0.807± 0.004 0.666± 0.015 0.751± 0.011

30 0.833± 0.007 0.816± 0.003 0.676± 0.014 0.774± 0.009

50 0.882± 0.004 0.825± 0.004 0.715± 0.013 0.802± 0.008

100 0.883± 0.003 0.828± 0.004 0.757± 0.011 0.830± 0.006

200 0.878± 0.003 0.850± 0.004 0.800± 0.008 0.846± 0.005

Full 0.857 0.810 – –

Table 11: Fair pairwise ranking accuracy comparison. Proportion of correctly ranked model pairs using 5-2
cross-validation (mean ± standard error over 100 random seeds). Both regression predictions and original subset
scores are evaluated on the same 21 held-out pairs. "Best" Subset uses Anchor Points for n ≤ 30 and Combined
Embedding for n ≥ 50.

that regression amplifies the signal from high-
quality items but also amplifies noise from un-
informative ones. Without principled selection,
adding regression to random items degrades per-
formance by overfitting to spurious patterns.

• Quality over quantity: Consistent with findings
in Section 4.4, regression performance peaks at
n = 100 (0.883) for best subsets before dropping
to 0.878 at n = 200 and 0.857 for the full bench-
mark. This confirms that adding more items in-
troduces lower-informative examples that perturb
regression weights.

These results validate our main findings: Ridge
regression generalizes better to unseen models
when applied to high-quality, diverse subsets, but
requires principled item selection to avoid amplify-
ing noise from uninformative examples.
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J Licenses

We list the licenses for artifacts involved in this
work as follows:

Models:

• GPT-4o-audio-preview, GPT-4o-mini-
audio-preview, GPT-4o-mini, GPT-5,
GPT-realtime, GPT-4o-transcribe, GPT-
4o-mini-tts, GPT-4.1, GPT-5.2: Proprietary
models. Usage governed by OpenAI Terms of
Service. https://openai.com/policies/

• Gemini-2.5-Pro, Gemini-2.5-Flash: Propri-
etary models. Usage governed by Google
Generative AI Terms of Service. https://
ai.google.dev/gemini-api/terms

• Qwen2.5-Omni-7B: Apache License 2.0.

• Qwen3-Omni-30B-A3B-Instruct: Apache
License 2.0

• Ultravox-v0.4-ToolACE-8B, Ultravox-v0.5-
llama-3.2-1B, Ultravox-v0.6-llama-3.1-8b:
MIT License.

• Llama-3.2-3B: Llama 3.2 Community Li-
cense Agreement. https://www.llama.
com/llama3_2/license/

• Voxtral-Small-24B-2507, Voxtral-Mini-3B-
2507: Apache License 2.0

• Granite-speech-3.3-8b: Apache License 2.0.

• Gemma-3n-e4b, Gemma-3n-e2b: Gemma
Terms of Use. https://ai.google.dev/
gemma/terms

Benchmarks:

• Dynamic-SUPERB Phase-2: Individ-
ual datasets within the benchmark have
varying licenses. Complete license infor-
mation available at https://github.com/
dynamic-superb/dynamic-superb/blob/
main/docs/dataset_license.md

• CAVA: CC BY-SA 4.0 © 2024 Talk Arena.
https://github.com/SALT-NLP/CAVA

• UltraEval-Audio: Apache License 2.0.

• SpeakBench (AudioJudge): MIT License.

• WildSpeech-Bench: Creative Commons At-
tribution 4.0 International (CC BY 4.0).

K Intended Use and Compliance

All artifacts used in this work are employed con-
sistent with their intended purposes as specified
by their creators. Existing benchmarks (Dynamic-
SUPERB, CAVA, UltraEval-Audio, SpeakBench,
WildSpeech-Bench), datasets (LMSYS-Chat-1M,
WildChat, BFCL v3), and pre-trained models are
used within their documented scope for research
evaluation of audio model capabilities. Speech
processing components (GPT-4o-transcribe, GPT-
4o-mini-tts, Silero VAD, WavLM-Large, Whisper-
large-v3) are employed for their intended audio
processing purposes.

Our released HUMANS benchmark and human
preference dataset are intended solely for research
purposes in audio model evaluation and meta-
analysis. The human preference dataset is derived
from research participants who consented to aca-
demic research use, and any derivative use must
comply with these original access conditions and
privacy protections outlined in Section 6.

L Package Details

We implement our experiments using Python 3.12
with the following key packages:

• PyTorch 2.8.0 with torchaudio 2.8.0 for model
inference

• Transformers 4.51.3 (Hugging Face) for
model loading and inference

• NumPy 2.2.6 for numerical computations
• Scikit-learn 1.7.0 for Ridge regression, PCA,

and K-Means clustering
• SciPy 1.16.0 for statistical computations
• Datasets 3.6.0 (Hugging Face) for dataset

loading and processing
• LiveKit 1.0.11 and livekit-agents 1.1.4 for

real-time conversational agent infrastructure
• vLLM 0.10.2 for model deployment

All experiments were conducted on NVIDIA
A6000 GPUs (48GB VRAM) for open-source
model deployments.
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